Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Biomed Sci ; 72(2): 78-84, 2015.
Article in English | MEDLINE | ID: mdl-26126325

ABSTRACT

Lung cancer has a known relationship with smoking and is one of the leading causes of cancer-related death worldwide. Although the number of studies discussing lung cancer is vast, treatment efficacy is still suboptimal due to the wide range of factors that affect patient outcome. This review aims to collect information on lung cancer treatment, specially focused on radiation therapy. It also compiles information regarding the influence of radiotherapy on the immune system and its response to tumour cells. It evaluates how immune cells react after radiation exposure and the influence of their cytokines in the tumour microenvironment. The literature analysis points out that the immune system is a very promising field of investigation regarding prognosis, mostly because the stromal microenvironment in the tumour can provide some information about what can succeed in the future concerning treatment choices and perspectives. T cells (CD4+ and CD8+), interleukin-8, vascular endothelial growth factor and transforming growth factor-ß seem to have a key role in the immune response after radiation exposure. The lack of large scale studies means there is no common consensus in the scientific community about the role of the immune system in lung cancer patients treated with radiotherapy. Clarification of the mechanism behind the immune response after radiation can lead to better treatments and better quality life for patients.


Subject(s)
Lung Neoplasms/immunology , Lung Neoplasms/radiotherapy , Humans , Immune System/radiation effects
2.
J Pharm Pharmacol ; 45(7): 601-5, 1993 Jul.
Article in English | MEDLINE | ID: mdl-8105052

ABSTRACT

Partition coefficients, Kp, of four dopamine antagonists (pimozide, fluspirilene, haloperidol and domperidone) between the aqueous phase and lipid bilayer vesicles were determined as a function of lipid chain length, unsaturation and temperature encompassing the range of the lipid phase transition. Model membranes of egg phosphatidylcholine (PC), dimyristoyl (DMPC)-, dipalmitoyl (DPPC)-, distearoyl (DSPC)- and dioleoyl (DOPC)-phosphatidylcholines were studied. Kp values of the drugs are different in the various membranes under study and depend on temperature, aliphatic carbon chain-length and on the presence of unsaturation in the aliphatic lipid chain. First-order transition of membrane lipids from the gel to the liquid crystalline state is accompanied by a sharp increase of the partition coefficient of pimozide and fluspirilene in DMPC, DPPC and DSPC bilayers. For domperidone, Kp values are maximal within the mid-point of phase transition of DMPC and DPPC, while for DSPC Kp values increase progressively with increasing temperature. Haloperidol Kp values display a maximum at the mid-point of phase transition of DMPC, while a progressive increase of Kp is observed in DPPC and DSPC. The four drugs are easily accommodated in bilayers of short aliphatic chain lipids (DMPC), the partition coefficients being 17,137 for pimozide, 18,700 for fluspirilene, 686 for domperidone and 722 for haloperidol, at temperatures 10 degrees C below the mid-point of the lipid phase transition. Except for haloperidol, the partition of the drugs in DOPC (18:1) is higher than that in DSPC (18:0) bilayers at a temperature above the phase transition temperature of both lipids.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Domperidone/chemistry , Fluspirilene/chemistry , Haloperidol/chemistry , Lipid Bilayers/chemistry , Pimozide/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Dimyristoylphosphatidylcholine/chemistry , Dopamine Antagonists , Phosphatidylcholines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...