Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biol Trace Elem Res ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955768

ABSTRACT

Cadmium, a hazardous environmental contaminant, is associated with metabolic disease development. The dose with the lowest observable adverse effect level (LOAEL) has not been studied, focusing on its effect on the pancreas. We aimed to evaluate the pancreatic redox balance and heat shock protein (HSP) expression in islets of Langerhans of male Wistar rats chronically exposed to Cd LOAEL doses, linked to their survival. Male Wistar rats were separated into control and cadmium groups (drinking water with 32.5 ppm CdCl2). At 2, 3, and 4 months, glucose, insulin, and cadmium were measured in serum; cadmium and insulin were quantified in isolated islets of Langerhans; and redox balance was analyzed in the pancreas. Immunoreactivity analysis of p-HSF1, HSP70, HSP90, caspase 3 and 9, and cell survival was performed. The results showed that cadmium exposure causes a serum increase and accumulation of the metal in the pancreas and islets of Langerhans, hyperglycemia, and hyperinsulinemia, associated with high insulin production. Cd-exposed groups presented high levels of reactive oxygen species and lipid peroxidation. An augment in MT and GSH concentrations with the increased enzymatic activity of the glutathione system, catalase, and superoxide dismutase maintained a favorable redox environment. Additionally, islets of Langerhans showed a high immunoreactivity of HSPs and minimal immunoreactivity to caspase associated with a high survival rate of Langerhans islet cells. In conclusion, antioxidative and HSP pancreatic defense avoids cell death associated with Cd accumulation in chronic conditions; however, this could provoke oversynthesis and insulin release, which is a sign of insulin resistance.

2.
Metabolites ; 13(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110230

ABSTRACT

Metabolic diseases are a worldwide health problem. Insulin resistance (IR) is their distinctive hallmark. For their study, animal models that provide reliable information are necessary, permitting the analysis of the cluster of abnormalities that conform to it, its progression, and time-dependent molecular modifications. We aimed to develop an IR model by exogenous insulin administration. The effective dose of insulin glargine to generate hyperinsulinemia but without hypoglycemia was established. Then, two groups (control and insulin) of male Wistar rats of 100 g weight were formed. The selected dose (4 U/kg) was administered for 15, 30, 45, and 60 days. Zoometry, a glucose tolerance test, insulin response, IR, and the serum lipid profile were assessed. We evaluated insulin signaling, glycogenesis and lipogenesis, redox balance, and inflammation in the liver. Results showed an impairment of glucose tolerance, dyslipidemia, hyperinsulinemia, and peripheral and time-dependent selective IR. At the hepatic level, insulin signaling was impaired, resulting in reduced hepatic glycogen levels and triglyceride accumulation, an increase in the ROS level with MAPK-ERK1/2 response, and mild pro-oxidative microenvironmental sustained by MT, GSH, and GR activity. Hepatic IR coincides with additions in MAPK-p38, NF-κB, and zoometric changes. In conclusion, daily insulin glargine administration generated a progressive IR model. At the hepatic level, the IR was combined with oxidative conditions but without inflammation.

3.
Toxics ; 11(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36976988

ABSTRACT

Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.

4.
Biol Trace Elem Res ; 201(8): 3903-3918, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36348173

ABSTRACT

Cadmium is a critical toxic agent in occupational and non-occupational settings and acute and chronic environmental exposure situations that have recently been associated with metabolic disease development. Until now, the no observed adverse effect level (NOAEL) of cadmium has not been studied regarding insulin resistance development. Therefore, we aimed to monitor whether chronic oral exposure to cadmium NOAEL dose induces insulin resistance in Wistar rats and investigate if oxidative stress and/or inflammation are related. Male Wistar rats were separated into control (standard normocalorie diet + water free of cadmium) and cadmium groups (standard normocalorie diet + drinking water with 15 ppm CdCl2). At 15, 30, and 60 days, oral glucose tolerance, insulin response, and insulin resistance were analyzed using mathematical models. In the liver glycogen, triglyceride, pro- and anti-inflammatory cytokines, cadmium, zinc, metallothioneins, and redox balance were quantified. Immunoreactivity analysis of proteins involved in metabolic and mitogenic insulin signaling was performed. The results showed that a cadmium NOAEL dose after 15 days of exposure causes ROS and mitogenic arm of insulin signaling to increase while hepatic glycogen diminishes. At 30 days, Cd accumulation accentuated ROS production, hepatic triglyceride overaccumulation, and mitogenic signals that develop insulin resistance. Finally, inflammation and lipid peroxidation appear after 60 days of Cd exposure, while lipids and carbohydrate homeostasis deteriorate. In conclusion, environmental exposure to cadmium NAOEL dose causes hepatic Cd accumulation and ROS overproduction that chronically declines the antioxidant defense, deteriorates metabolic homeostasis associated with the mitogenic pathway of insulin signaling, and induces insulin resistance.


Subject(s)
Cadmium , Insulin Resistance , Rats , Animals , Male , Rats, Wistar , Reactive Oxygen Species/metabolism , No-Observed-Adverse-Effect Level , MAP Kinase Signaling System , Liver/metabolism , Inflammation/metabolism , Oxidative Stress , Insulin/metabolism , Triglycerides
5.
Biol Trace Elem Res ; 200(10): 4370-4384, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34846673

ABSTRACT

Cadmium is a nonessential transition metal considered one of the more hazardous environmental contaminants. The population is chronically exposed to this metal at low concentrations, designated as the LOAEL (lowest observable adverse effect level) dose. We aimed to investigate whether oral subacute exposure to cadmium LOAEL disrupts hormonal and metabolic effects of the liver-adipose axis in Wistar rats. Fifty male Wistar rats were separated into two groups: control (standard normocalorie diet + water free of cadmium) and cadmium (standard normocalorie diet + drinking water with 32.5 ppm CdCl2). After 1 month, zoometry, a serum lipid panel, adipokines, and proinflammatory cytokines were evaluated. Tests of glucose and insulin tolerance (ITT) and insulin resistance were performed. Histological studies on structure, triglyceride distribution, and protein expression of the insulin pathway were performed in the liver and retroperitoneal adipose tissue. In both tissues, the cadmium, triglyceride, glycogen, and proinflammatory cytokine contents were also quantified. The cadmium group developed dyslipidemia, glucose intolerance, hyperinsulinemia, hyperleptinemia, inflammation, and selective insulin resistance in the liver and adipose tissue. In the liver, glycogen synthesis was diminished, while de novo lipogenesis increased, which was associated with low GSK3ß-pS9 and strong expression of SREBP-1c. Dysfunctional adipose tissue was observed with hypertrophy and lipolysis, without changes in SREBP-1c expression and low glycogen synthesis. Both tissues accumulated cadmium and developed inflammation. In conclusion, oral subacute cadmium LOAEL dose exposure induces inflammation, insulin signaling modifications, an early insulin resistance stage (insensibility), and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats.


Subject(s)
Insulin Resistance , Adipose Tissue/metabolism , Animals , Cadmium/pharmacology , Glycogen/metabolism , Inflammation/metabolism , Insulin/metabolism , Liver/metabolism , Male , Rats , Rats, Wistar , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides
6.
Biometals ; 34(2): 245-258, 2021 04.
Article in English | MEDLINE | ID: mdl-33389338

ABSTRACT

Cadmium, one of the more hazardous environmental contaminants, has been proposed as a metabolic disruptor. Vanadium has emerged as a possible treatment for metabolic diseases. Both metals are important in public health. We aimed to investigate whether vanadium treatment is effective against metabolic disturbances caused by chronic exposure to the lowest-observable adverse effect level of cadmium. Male Wistar rats were exposed to cadmium (32.5 ppm) in drinking water for 3 months. Metabolic complications such as overweight, visceral adipose gain, hyperglycemia, impaired glucose tolerance, and dyslipidemia were detected, and low glycogen levels and steatosis were observed in the tissues. Then, the control and treated animals were subdivided and treated with a solution of 5 µM NaVO3/kg/twice a week for 2 months. The control-NaVO3 group did not show zoometric or metabolic changes. A strong interaction of NaVO3 treatment over cadmium metabolic disruption was observed. The vanadium accumulation diminished cadmium concentration in tissues. Also, vanadium interaction improved glucose homeostasis. The major effect was observed on glycogen synthesis, which was fully recovered in all tissues analyzed. Additionally, vanadium treatment prevented overweight and visceral fat accumulation, improving BMI and the percentage of fat. However, NaVO3 treatment did not have an effect on dyslipidemia or steatosis. In conclusion, this work shows that vanadium administration has a strong effect against metabolic disturbances caused by chronic cadmium exposure, observing powerful interaction on glucose homeostasis.


Subject(s)
Disease Models, Animal , Glycogen/analysis , Metabolic Syndrome/drug therapy , Vanadates/pharmacology , Animals , Cadmium/administration & dosage , Male , Metabolic Syndrome/chemically induced , Rats , Rats, Wistar
7.
Toxics ; 6(3)2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30201894

ABSTRACT

Previous studies have proposed that cadmium (Cd) is a metabolic disruptor, which is associated with insulin resistance, metabolic syndrome, and diabetes. This metal is not considered by international agencies for the study of metabolic diseases. In this study, we investigate the effect of metformin on Cd-exposed Wistar rats at a lowest-observed-adverse-effect level (LOAEL) dose (32.5 ppm) in drinking water. Metabolic complications in the rats exposed to Cd were dysglycemia, insulin resistance, dyslipidemia, dyslipoproteinemia, and imbalance in triglyceride and glycogen storage in the liver, muscle, heart, kidney, and adipose tissue. Meanwhile, rats treated orally with a No-observable-adverse-effect level (NOAEL) dose of metformin (200 mg/kg/day) showed mild improvement on serum lipids, but not on glucose tolerance; in tissues, glycogen storage was improved, but lipid storage was ineffective. In conclusion, metformin as a first-line pharmacological therapy must take into consideration the origin and duration of metabolic disruption, because in this work the NOAEL dose of metformin (200 mg/kg/day) showed a limited efficiency in the metabolic disruption caused by chronic Cd exposure.

8.
Bioinorg Chem Appl ; 2018: 2151079, 2018.
Article in English | MEDLINE | ID: mdl-30026756

ABSTRACT

Vanadium(IV/V) compounds have been studied as possible metallopharmaceutical drugs against diabetes mellitus. However, mechanisms of action and toxicological threshold have been tackled poorly so far. In this paper, our purposes were to evaluate the metabolic activity on dyslipidemia and dysglycemia, insulin signaling in liver and adipose tissue, and toxicology of the title compound. To do so, the previously reported bisammonium tetrakis 4-(N,N-dimethylamino)pyridinium decavanadate, the formula of which is [DMAPH]4(NH4)2[V10O28]·8H2O (where DMAPH is 4-dimethylaminopyridinium ion), was synthesized, and its dose-response curve on hyperglycemic rats was evaluated. A Long-Evans rat model showing dyslipidemia and dysglycemia with parameters that reproduce metabolic syndrome and severe insulin resistance was generated. Two different dosages, 5 µmol and 10 µmol twice a week of the title compound (equivalent to 2.43 mg·V/kg/day and 4.86 mg·V/kg/day, resp.), were administered intraperitoneal (i.p.) for two months. Then, an improvement on each of the following parameters was observed at a 5 µmol dose: weight reduction, abdominal perimeter, fatty index, body mass index, oral glucose tolerance test, lipid profile, and adipokine and insulin resistance indexes. Nevertheless, when the toxicological profile was evaluated at a 10 µmol dose, it did not show complete improvement, tested by the liver and adipose histology, as well as by insulin receptor phosphorylation and GLUT-4 expression. In conclusion, the title compound administration produces regulation on lipids and carbohydrates, regardless of dose, but the pharmacological and toxicological threshold for cell regulation are suggested to be up to 5 µmol (2.43 mg·V/kg/day) dose twice per week.

10.
J Inorg Biochem ; 147: 85-92, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25920353

ABSTRACT

Because of the increasing global spread of type 2 diabetes mellitus, there is a need to develop new antidiabetic agents. Recently we have synthesized new decavanadates using metformin as counterion. In particular, the compound containing three metforminium dications has been obtained in high yield and has been completely characterized. Biological studies using Wistar rats that have been fed with a high caloric diet inducing insulin resistance and metabolic syndrome were carried out. Results of the impact on key biochemical parameters mediated by metformin alone and the new compound are here presented. The metforminium decavanadate (H2Metf)3[V10O28]·8H2O, abbreviated as Metf-V10O28, was shown to have pharmacological potential as a hypoglycemic, lipid-lowering and metabolic regulator, since the resulting compound made of the two components with antidiabetic activities, reduces both dosage and time of administration (twice a week). Hence, due to the beneficial effects induced by the metforminium decavanadate we recommend to continue the exploration into the mechanism and toxicology of this new compound.


Subject(s)
Glucose Metabolism Disorders/drug therapy , Hyperlipidemias/drug therapy , Hypoglycemic Agents/therapeutic use , Hypolipidemic Agents/therapeutic use , Metformin/analogs & derivatives , Metformin/therapeutic use , Vanadates/therapeutic use , Animals , Carbohydrate Metabolism , Diet, High-Fat/adverse effects , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Hypolipidemic Agents/chemical synthesis , Hypolipidemic Agents/pharmacokinetics , Lipid Metabolism , Male , Metformin/chemical synthesis , Metformin/pharmacokinetics , Rats , Rats, Wistar , Tissue Distribution , Vanadates/chemical synthesis , Vanadates/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...