Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Biol Inorg Chem ; 26(2-3): 177-203, 2021 05.
Article in English | MEDLINE | ID: mdl-33606117

ABSTRACT

Among the several alcohol dehydrogenases, PQQ-dependent enzymes are mainly found in the α, ß, and γ-proteobacteria. These proteins are classified into three main groups. Type I ADHs are localized in the periplasm and contain one Ca2+-PQQ moiety, being the methanol dehydrogenase (MDH) the most representative. In recent years, several lanthanide-dependent MDHs have been discovered exploding the understanding of the natural role of lanthanide ions. Type II ADHs are localized in the periplasm and possess one Ca2+-PQQ moiety and one heme c group. Finally, type III ADHs are complexes of two or three subunits localized in the cytoplasmic membrane and possess one Ca2+-PQQ moiety and four heme c groups, and in one of these proteins, an additional [2Fe-2S] cluster has been discovered recently. From the bioinorganic point of view, PQQ-dependent alcohol dehydrogenases have been revived recently mainly due to the discovery of the lanthanide-dependent enzymes. Here, we review the three types of PQQ-dependent ADHs with special focus on their structural features and electron transfer processes. The PQQ-Alcohol dehydrogenases are classified into three main groups. Type I and type II ADHs are located in the periplasm, while type III ADHs are in the cytoplasmic membrane. ADH-I have a Ca-PQQ or a Ln-PQQ, ADH-II a Ca-PQQ and one heme-c and ADH-III a Ca-PQQ and four hemes-c. This review focuses on their structural features and electron transfer processes.


Subject(s)
Alcohol Dehydrogenase/metabolism , PQQ Cofactor/metabolism , Alcohol Dehydrogenase/chemistry , Electron Transport , Heme/metabolism
2.
FEBS J ; 288(4): 1286-1304, 2021 02.
Article in English | MEDLINE | ID: mdl-32621793

ABSTRACT

The enzyme 6-phosphogluconate dehydrogenase catalyzes the conversion of 6-phosphogluconate to ribulose-5-phosphate. It represents an important reaction in the oxidative pentose phosphate pathway, producing a ribose precursor essential for nucleotide and nucleic acid synthesis. We succeeded, for the first time, to determine the three-dimensional structure of this enzyme from an acetic acid bacterium, Gluconacetobacter diazotrophicus (Gd6PGD). Active Gd6PGD, a homodimer (70 kDa), was present in both the soluble and the membrane fractions of the nitrogen-fixing microorganism. The Gd6PGD belongs to the newly described subfamily of short-chain (333 AA) 6PGDs, compared to the long-chain subfamily (480 AA; e.g., Ovis aries, Homo sapiens). The shorter amino acid sequence in Gd6PGD induces the exposition of hydrophobic residues in the C-terminal domain. This distinct structural feature is key for the protein to associate with the membrane. Furthermore, in terms of function, the short-chain 6PGD seems to prefer NAD+ over NADP+ , delivering NADH to the membrane-bound NADH dehydrogenase of the microorganisms required by the terminal oxidases to reduce dioxygen to water for energy conservation. ENZYME: ECnonbreakingspace1.1.1.343. DATABASE: Structural data are available in PDB database under the accession number 6VPB.


Subject(s)
Bacterial Proteins/metabolism , Gluconacetobacter/enzymology , Gluconates/metabolism , Phosphogluconate Dehydrogenase/metabolism , Ribulosephosphates/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Gluconacetobacter/genetics , Gluconates/chemistry , Humans , Models, Chemical , Models, Molecular , Molecular Structure , NAD/metabolism , NADP/metabolism , Phosphogluconate Dehydrogenase/classification , Phosphogluconate Dehydrogenase/genetics , Phylogeny , Protein Domains , Protein Multimerization , Ribulosephosphates/chemistry , Sequence Homology, Amino Acid
3.
Met Ions Life Sci ; 202020 Mar 23.
Article in English | MEDLINE | ID: mdl-32851827

ABSTRACT

Cytochromes P450 (CYPs) are heme b-binding enzymes and belong to Nature's most versatile catalysts. They participate in countless essential life processes, and exist in all domains of life, Bacteria, Archaea, and Eukarya, and in viruses. CYPs attract the interest of researchers active in fields as diverse as biochemistry, chemistry, biophysics, molecular biology, pharmacology, and toxicology. CYPs fight chemicals such as drugs, poisonous compounds in plants, carcinogens formed during cooking, and environmental pollutants. They represent the first line of defense to detoxify and solubilize poisonous substances by modifying them with dioxygen. The heme iron is proximally coordinated by a thiolate residue, and this ligation state represents the active form of the enzyme. The Fe(III) center displays characteristic UV/Vis and EPR spectra (Soret maximum at 418 nm; g-values at 2.41, 2.26, 1.91). The Fe(II) state binds the inhibitor carbon monoxide (CO) to produce a Fe(II)-CO complex, with the major absorption maximum at 450 nm, hence, its name P450. CYPs are flexible proteins in order to allow a vast range of substrates to enter and products to leave. Two extreme forms exist: substrate-bound (closed) and substrate-free (open). CYPs share a sophisticated catalytic cycle that involves a series of consecutive transformations of the heme thiolate active site, with the strong oxidants compound I and II as key intermediates. Each of these high-valent Fe(IV) species has its characteristic features and chemical properties, crucial for the activation of dioxygen and cleavage of strong C-H bonds.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Ferric Compounds , Heme , Oxidation-Reduction , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL