Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(22): 10179-10193, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38729620

ABSTRACT

Oxalate ligands are found in many classes of materials, including energy storage materials and biominerals. Determining their local environments at the atomic scale is thus paramount to establishing the structure and properties of numerous phases. Here, we show that high-resolution 17O solid-state NMR is a valuable asset for investigating the structure of crystalline oxalate systems. First, an efficient 17O-enrichment procedure of oxalate ligands is demonstrated using mechanochemistry. Then, 17O-enriched oxalates were used for the synthesis of the biologically relevant calcium oxalate monohydrate (COM) phase, enabling the analysis of its structure and heat-induced phase transitions by high-resolution 17O NMR. Studies of the low-temperature COM form (LT-COM), using magnetic fields from 9.4 to 35.2 T, as well as 13C-17O MQ/D-RINEPT and 17O{1H} MQ/REDOR experiments, enabled the 8 inequivalent oxygen sites of the oxalates to be resolved, and tentatively assigned. The structural changes upon heat treatment of COM were also followed by high-resolution 17O NMR, providing new insight into the structures of the high-temperature form (HT-COM) and anhydrous calcium oxalate α-phase (α-COA), including the presence of structural disorder in the latter case. Overall, this work highlights the ease associated with 17O-enrichment of oxalate oxygens, and how it enables high-resolution solid-state NMR, for "NMR crystallography" investigations.

2.
FASEB J ; 37(11): e23230, 2023 11.
Article in English | MEDLINE | ID: mdl-37781977

ABSTRACT

Gliomas account for 50% of brain cancers and are therefore the most common brain tumors. Molecular alterations involved in adult gliomas have been identified and mainly affect tyrosine kinase receptors with amplification and/or mutation of the epidermal growth factor receptor (EGFR) and its associated signaling pathways. Several targeted therapies have been developed, but current treatments remain ineffective for glioblastomas, the most severe forms. Thus, it is a priority to identify new pharmacological targets. Drosophila glioma models established in larvae and adults are useful to identify new genes and signaling pathways involved in glioma progression. Here, we used a Drosophila glioma model in adults, to characterize metabolic disturbances associated with glioma and assess the consequences of 5-HT7 R expression on glioma development. First, by using in vivo magnetic resonance imaging, we have shown that expression of the constitutively active forms of EGFR and PI3K in adult glial cells induces brain enlargement. Then, we explored altered cellular metabolism by using high-resolution magic angle spinning NMR and 1 H-13 C heteronuclear single quantum coherence solution states. Discriminant metabolites identified highlight the rewiring of metabolic pathways in glioma and associated cachexia phenotypes. Finally, the expression of 5-HT7 R in this adult model attenuates phenotypes associated with glioma development. Collectively, this whole-animal approach in Drosophila allowed us to provide several rapid and robust phenotype readouts, such as enlarged brain volume and glioma-associated cachexia, as well as to determine the metabolic pathways involved in glioma genesis and finally to confirm the interest of the 5-HT7 R in the treatment of glioma.


Subject(s)
Brain Neoplasms , Glioma , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cachexia , Drosophila/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Serotonin
3.
Inorg Chem ; 62(40): 16627-16640, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37747836

ABSTRACT

The structure of MOF3 (M = Nb, Ta) compounds was precisely modeled by combining powder X-ray diffraction, solid-state NMR spectroscopy, and semiempirical dispersion-corrected DFT calculations. It consists of stacked ∞(MOF3) layers along the c⃗ direction formed by heteroleptic corner-connected MX6 (X = O, F) octahedra. 19F NMR resonance assignments and occupancy rates of the anionic crystallographic sites have been revised. The bridging site is shared equally by the anions, and the terminal site is occupied by F only. An O/F correlated disorder is expected since cis-MO2F4 octahedra are favored, resulting in one-dimensional -F-M-O-M- strings along the <100> and <010> directions. Ten different 2 × 2 × 1 supercells per compound, fulfilling these characteristics, were built. Using DFT calculations and the GIPAW approach, the supercells were relaxed and the 19F isotropic chemical shift values were determined. The agreement between the experimental and calculated 19F spectra is excellent for TaOF3. The 1H and 19F experimental NMR spectra revealed that some of the bridging F atoms are substituted by OH groups, especially in NbOF3. New supercells involving OH groups were generated. Remarkably, the best agreement is obtained for the supercells with the composition closest to that estimated from the 19F NMR spectra, i.e., NbOF2.85(OH)0.15.

4.
J Magn Reson ; 354: 107527, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37603989

ABSTRACT

Lithium-ion batteries are at the core of the democratisation of electric transportation and portative electronic devices. However, fast and/or low temperature charge induce performance loss, mainly through lithium plating, a degrading mechanism. In this report, 7Li operando Nuclear Magnetic Resonance spectroscopy is used to detect the onset of metastable lithium deposits in an NMC622/graphite cell at 0 °C and fast charge. An operando setup, compatible with low temperatures, was developed with special attention to the pressure applied on the electrodes/separator stack and noise reduction to enable early detection and good time-resolution. Direct detection of metallic lithium enables drawing correlations between lithium plating and electrochemical data.

5.
J Funct Biomater ; 14(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37233356

ABSTRACT

Critical bone defect repair remains a major medical challenge. Developing biocompatible materials with bone-healing ability is a key field of research, and calcium-deficient apatites (CDA) are appealing bioactive candidates. We previously described a method to cover activated carbon cloths (ACC) with CDA or strontium-doped CDA coatings to generate bone patches. Our previous study in rats revealed that apposition of ACC or ACC/CDA patches on cortical bone defects accelerated bone repair in the short term. This study aimed to analyze in the medium term the reconstruction of cortical bone in the presence of ACC/CDA or ACC/10Sr-CDA patches corresponding to 6 at.% of strontium substitution. It also aimed to examine the behavior of these cloths in the medium and long term, in situ and at distance. Our results at day 26 confirm the particular efficacy of strontium-doped patches on bone reconstruction, leading to new thick bone with high bone quality as quantified by Raman microspectroscopy. At 6 months the biocompatibility and complete osteointegration of these carbon cloths and the absence of micrometric carbon debris, either out of the implantation site or within peripheral organs, was confirmed. These results demonstrate that these composite carbon patches are promising biomaterials to accelerate bone reconstruction.

6.
Angew Chem Int Ed Engl ; 62(7): e202217992, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36541742

ABSTRACT

Intensive research on improving the catalytic properties of zeolites is focused on modulating their acidity and the distribution of associated Al sites. Herein, by studying a series of ZSM-5 zeolites over a broad range of Al content, we demonstrate how the nature of the mineralizing agent (F- or OH- ) used in hydrothermal syntheses directly impacts Al sites distribution. The proportions of Al sites, probed by 27 Al NMR, depend on the Si/Al ratio for F- , but remain identical for OH- (from Si/Al=30 to 760). This leads to contrasting variations in weak and strong acidities. Such opposite effect of mineralizers is explained by the spatial location of negative charges and the resulting balance between short- and long-range electrostatic interactions. This understanding paves the way for additional and simple opportunities to control zeolites' acidity.

7.
Inorg Chem ; 61(24): 9339-9351, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35723506

ABSTRACT

Crystallization of oxide glasses rich in Zn2+, Ga3+, and Ge4+ is of interest for the synthesis of new transparent ceramics. In this context, we report the identification and detailed structural characterization of a new solid solution Ca3Ga2-2xZnxGe4+xO14 (0 ≤ x ≤ 1). These compounds adopt the trigonal langasite structure type, offering three possible crystallographic sites for the coordination of isoelectronic Zn2+, Ga3+, and Ge4+. We used neutron diffraction to determine distributions of Ga3+/Ge4+ and Zn2+/Ge4+ in the simpler end members Ca3Ga2Ge4O14 and Ca3ZnGe5O14, while for the complex intermediate member Ca3GaZn0.5Ge4.5O14, we used an original approach combining quantitative 2D analysis of atomic-resolution STEM-EDS maps with neutron diffraction. This revealed that, across the solid solution, the tetrahedral D sites remain fully occupied by Ge4+, while Zn2+, Ga3+, and the remaining Ge4+ are shared between octahedral B- and tetrahedral C sites in proportions that depend upon their relative ionic radii. The adoption of the trigonal langasite structure by glass-crystallized Ca3ZnGe5O14, a compound that was previously observed only in a distorted monoclinic langasite polymorph, is attributed to substantial disorder between Zn2+ and Ge4+ over the B and C sites. The quantitative 2D refinement of atomic-resolution STEM-EDS maps is applicable to a wide range of materials where multiple cations with poor scattering contrast are distributed over different crystallographic sites in a crystal structure.

8.
Cells ; 11(8)2022 04 09.
Article in English | MEDLINE | ID: mdl-35455961

ABSTRACT

Gliomas are the most common primary brain tumors in adults. Significant progress has been made in recent years in identifying the molecular alterations involved in gliomas. Among them, an amplification/overexpression of the EGFR (Epidermal Growth Factor Receptor) proto-oncogene and its associated signaling pathways have been widely described. However, current treatments remain ineffective for glioblastomas, the most severe forms. Thus, the identification of other pharmacological targets could open new therapeutic avenues. We used a glioma model in Drosophila melanogaster that results from the overexpression of constitutively active forms of EGFR and PI3K specifically in glial cells. We observed hyperproliferation of glial cells that leads to an increase in brain size and lethality at the third instar larval stage. After expression of the human serotonin 5-HT7 receptor in this glioma model, we observed a decrease in larval lethality associated with the presence of surviving adults and a return to a normal morphology of brain for some Drosophila. Those phenotypic changes are accompanied by the normalization of certain metabolic biomarkers measured by High-Resolution Magic Angle Spinning NMR (HR-MAS NMR). The 5-HT7R expression in glioma also restores some epigenetic modifications and characteristic markers of the signaling pathways associated with tumor growth. This study demonstrates the role of the serotonin 5-HT7 receptor as a tumor suppressor gene which is in agreement with transcriptomic analysis obtained on human glioblastomas.


Subject(s)
Glioblastoma , Glioma , Receptors, Serotonin , Animals , Animals, Genetically Modified , Biomarkers/metabolism , Drosophila melanogaster/genetics , ErbB Receptors/metabolism , Glioblastoma/pathology , Glioma/pathology , Humans , Phenotype , Receptors, Serotonin/genetics , Serotonin/metabolism
9.
J Biomed Mater Res B Appl Biomater ; 110(5): 1120-1130, 2022 05.
Article in English | MEDLINE | ID: mdl-34882958

ABSTRACT

We have previously shown that activated carbon fiber cloth (ACC) either uncoated or coated with carbonated calcium-deficient hydroxyapatite (CDA), namely ACC and ACC/CDA, were biocompatible in vitro with human osteoblasts. Here we hypothesized that ACC and ACC/CDA could be used as tissue patches in vivo to accelerate wounded bone healing. In a model of rat femoral defect, we have compared spontaneous cortical bone regeneration with regeneration in the presence of ACC and ACC/CDA patches. At Day 7, 14, and 21, bone formation was evaluated using microcomputed tomography, magnetic resonance imaging, and histological analysis. Our results demonstrate first that these ACC tissues are highly biocompatible in vivo, and second that ACC/CDA patches apposition results in the acceleration of bone reconstruction due to a guiding action of the ACC fibers and an osteogenic effect of the CDA phase. We guess that this approach may represent a valuable strategy to accelerate bone regeneration in human.


Subject(s)
Charcoal , Durapatite , Animals , Bone Regeneration , Calcium/pharmacology , Carbon Fiber , Carbonates , Charcoal/pharmacology , Durapatite/pharmacology , Osteogenesis , Rats , Tissue Scaffolds , X-Ray Microtomography
10.
J Proteome Res ; 20(8): 3977-3991, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34286978

ABSTRACT

Human malignant gliomas are the most common type of primary brain tumor. Composed of glial cells and their precursors, they are aggressive and highly invasive, leading to a poor prognosis. Due to the difficulty of surgically removing tumors and their resistance to treatments, novel therapeutic approaches are needed to improve patient life expectancy and comfort. Drosophila melanogaster is a compelling genetic model to better understanding human neurological diseases owing to its high conservation in signaling pathways and cellular content of the brain. Here, glioma has been induced in Drosophila by co-activating the epidermal growth factor receptor and the phosphatidyl-inositol-3 kinase signaling pathways. Complementary nuclear magnetic resonance (NMR) techniques were used to obtain metabolic profiles in the third instar larvae brains. Fresh organs were directly studied by 1H high resolution-magic angle spinning (HR-MAS) NMR, and brain extracts were analyzed by solution-state 1H-NMR. Statistical analyses revealed differential metabolic signatures, impacted metabolic pathways, and glioma biomarkers. Each method was efficient to determine biomarkers. The highlighted metabolites including glucose, myo-inositol, sarcosine, glycine, alanine, and pyruvate for solution-state NMR and proline, myo-inositol, acetate, and glucose for HR-MAS show very good performances in discriminating samples according to their nature with data mining based on receiver operating characteristic curves. Combining results allows for a more complete view of induced disturbances and opens the possibility of deciphering the biochemical mechanisms of these tumors. The identified biomarkers provide a means to rebalance specific pathways through targeted metabolic therapy and to study the effects of pharmacological treatments using Drosophila as a model organism.


Subject(s)
Drosophila melanogaster , Glioma , Animals , Biomarkers , Glioma/diagnostic imaging , Glioma/genetics , Humans , Magnetic Resonance Spectroscopy , Metabolomics
11.
J Magn Reson ; 330: 107029, 2021 09.
Article in English | MEDLINE | ID: mdl-34311423

ABSTRACT

The measurement of dipolar and J- couplings between 29Si and 17O isotopes is challenging owing to (i) the low abundance of both isotopes and (ii) their close Larmor frequencies, which only differ by 19%. These issues are circumvented here by the use of isotopic enrichment and dedicated triple-resonance magic-angle spinning NMR probe. The surface of 29Si-enriched silica was labelled with 17O isotope and heated at 80 and 200 °C. 29Si-17O connectivities and proximities were probed using two-dimensional (2D) through-bond and through-space heteronuclear multiple-quantum coherences (J- and D-HMQC) experiments between 17O and 29Si nuclei. The simulation of the build-up of the J- and D-HMQC signals allowed the first experimental measurement of J- and dipolar coupling constants between 17O and 29Si nuclei. These HMQC experiments allow distinguishing two distinct siloxane (SiOSi) oxygen sites: (i) those covalently bonded to Q3 and Q4 groups, having a hydroxyl group as a second neighbour and (ii) those covalently bonded to two Q4 groups. The measured J- and dipolar coupling constants of siloxane 17O nucleus with Q4 29Si nuclei differ from those with Q3 29Si nuclei. These results indicate that the 29Si-17O one-bond J-coupling and Si-O bond length depend on the second neighbours of the Si atoms.

12.
Chemistry ; 27(37): 9589-9596, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-33830553

ABSTRACT

The synthesis and characterization of a polyrotaxanated covalent organic network (CON) based on the association between the viologen and pillar[5]arene (P[5]OH) units are reported. The mechanical bond allows for the irreversible insertion of n-type redox centers (P[5]OH macrocycles) within a pristine structure based on p-type viologen redox centers. Both redox units are active on a narrow potential range and, in water, the presence of P[5]OH greatly increases the electroactivity of the material.

13.
Nat Commun ; 12(1): 676, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514729

ABSTRACT

Across the evolutionary history of insects, the shift from nitrogen-rich carnivore/omnivore diets to nitrogen-poor herbivorous diets was made possible through symbiosis with microbes. The herbivorous turtle ants Cephalotes possess a conserved gut microbiome which enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids. This enrichment is assumed to benefit the host, but we do not know to what extent. To gain insights into nitrogen assimilation in the ant cuticle we use gut bacterial manipulation, 15N isotopic enrichment, isotope-ratio mass spectrometry, and 15N nuclear magnetic resonance spectroscopy to demonstrate that gut bacteria contribute to the formation of proteins, catecholamine cross-linkers, and chitin in the cuticle. This study identifies the cuticular components which are nitrogen-enriched by gut bacteria, highlighting the role of symbionts in insect evolution, and provides a framework for understanding the nitrogen flow from nutrients through bacteria into the insect cuticle.


Subject(s)
Animal Shells/growth & development , Ants/growth & development , Gastrointestinal Microbiome/physiology , Herbivory/physiology , Symbiosis/physiology , Amino Acids/metabolism , Animals , Ants/metabolism , Ants/microbiology , Chitin/biosynthesis , Insect Proteins/biosynthesis , Nitrogen/metabolism
14.
Solid State Nucl Magn Reson ; 110: 101699, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33190062

ABSTRACT

We present an algorithm suitable for automatically correcting rolling baseline coming from time-domain truncation induced by the dead time in pulse-acquire one-dimensional MAS NMR spectra. It relies on an iterative estimation of the baseline restricted in the time-domain by the dead time duration combined with a histogram filter allowing adaptive selection of the baseline points. This method does not make any assumption regarding the NMR resonances line shapes or widths and does not modify the acquired free induction decay points. This makes it suitable for accurate deconvolution and quantification of single-pulse MAS NMR spectra. The baseline correction accuracy is evaluated on synthetic solid-state spectra of 19F, 71Ga, and 23Na by comparing the fitted baseline to the theoretical one. The versatility of the algorithm is also exemplified on three additional solid-state spectra of 23Na and 71Ga. The algorithm is made available to the community through a user-friendly standalone Matlab® application.

15.
Angew Chem Int Ed Engl ; 59(43): 19247-19253, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32649793

ABSTRACT

Aluminium batteries constitute a safe and sustainable high-energy-density electrochemical energy-storage solution. Viable Al-ion batteries require suitable electrode materials that can readily intercalate high-charge Al3+ ions. Here, we investigate the Al3+ intercalation chemistry of anatase TiO2 and how chemical modifications influence the accommodation of Al3+ ions. We use fluoride- and hydroxide-doping to generate high concentrations of titanium vacancies. The coexistence of these hetero-anions and titanium vacancies leads to a complex insertion mechanism, attributed to three distinct types of host sites: native interstitial sites, single vacancy sites, and paired vacancy sites. We demonstrate that Al3+ induces a strong local distortion within the modified TiO2 structure, which affects the insertion properties of the neighbouring host sites. Overall, specific structural features induced by the intercalation of highly polarising Al3+ ions should be considered when designing new electrode materials for polyvalent batteries.

16.
Sci Rep ; 10(1): 9516, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32528106

ABSTRACT

Drosophila flies are versatile animal models for the study of gene mutations in neuronal pathologies. Their small size allows performing in vivo Magic Angle Spinning (MAS) experiments to obtain high-resolution 1H nuclear magnetic resonance (NMR) spectra. Here, we use spatially-resolved 1H high-resolution MAS NMR to investigate in vivo metabolite contents in different segments of the fly body. A comparative study of metabolic changes was performed for three neurodegenerative disorders: two cell-specific neuronal and glial models of Huntington disease (HD) and a model of glutamate excitotoxicity. It is shown that these pathologies are characterized by specific and sometimes anatomically localized variations in metabolite concentrations. In two cases, the modifications of 1H MAS NMR spectra localized in fly heads were significant enough to allow the creation of a predictive model.


Subject(s)
Drosophila melanogaster , Metabolomics/methods , Neurodegenerative Diseases/metabolism , Proton Magnetic Resonance Spectroscopy , Animals , Disease Models, Animal , Multivariate Analysis , Neurodegenerative Diseases/pathology , Neuroglia/pathology , Neurons/pathology
17.
Magn Reson Chem ; 58(11): 1118-1129, 2020 11.
Article in English | MEDLINE | ID: mdl-32324938

ABSTRACT

Magic-angle-spinning (MAS) enhances sensitivity and resolution in solid-state nuclear magnetic resonance (NMR) measurements. MAS is obtained by aerodynamic levitation and drive of a rotor, which results in large centrifugal forces that may affect the physical state of soft materials, such as polymers, and subsequent solid-state NMR measurements. Here, we investigate the effects of MAS on the solid-state NMR measurements of a polymer electrolyte for lithium-ion battery applications, poly(ethylene oxide) (PEO) doped with the lithium salt LiTFSI. We show that MAS induces local chain ordering, which manifests itself as characteristic lineshapes with doublet-like splittings in subsequent solid-state 1 H, 7 Li, and 19 F static NMR spectra characterizing the PEO chains and solvated ions. MAS results in distributions of stresses and hence local chain orientations within the rotor, yielding distributions in the local magnetic susceptibility tensor that give rise to the observed NMR anisotropy and lineshapes. The effects of MAS were investigated on solid-state 7 Li and 19 F pulsed-field-gradient (PFG) diffusion and 7 Li longitudinal relaxation NMR measurements. Activation energies for ion diffusion were affected modestly by MAS. 7 Li longitudinal relaxation rates, which are sensitive to lithium-ion dynamics in the nanosecond regime, were essentially unchanged by MAS. We recommend that NMR researchers studying soft polymeric materials use only the spin rates necessary to achieve the desired enhancements in sensitivity and resolution, as well as acquire static NMR spectra after MAS experiments to reveal any signs of stress-induced local ordering.

18.
Inorg Chem ; 59(9): 6308-6318, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32286067

ABSTRACT

A crystallographic approach incorporating multinuclear high field solid state NMR (SSNMR), X-ray structure determinations, TEM observation, and density functional theory (DFT) was used to characterize two polymorphs of rubidium cryolite, Rb3AlF6. The room temperature phase was found to be ordered and crystallizes in the Fddd (no. 70) space group with a = 37.26491(1) Å, b = 12.45405(4) Å, and c = 17.68341(6) Å. Comparison of NMR measurements and computational results revealed the dynamic rotations of the AlF6 octahedra. Using in situ variable temperature MAS NMR measurements, the chemical exchange between rubidium sites was observed. The ß-phase, i.e., high temperature polymorph, adopts the ideal cubic double-perovskite structure, space group Fm3m, with a = 8.9930(2) Å at 600 °C. Additionally, a series of polymorphs of K3AlF6 has been further characterized by high field high temperature SSNMR and DFT computation.

19.
Inorg Chem ; 58(24): 16387-16401, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31790218

ABSTRACT

Crystallization from glass can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel compounds and control the optical properties of resulting glass-ceramics. Here, we report on a crystallization study of the ZrF4-TeO2 glass system and show that under specific synthesis conditions, a previously unreported Te0.47Zr0.53OxFy zirconium oxyfluorotellurite antiglass phase can be selectively crystallized at the nanometric scale within the 65TeO2-35ZrF4 amorphous matrix. This leads to highly transparent glass-ceramics in both the visible and near-infrared ranges. Under longer heat treatment, the stable cubic ZrTe3O8 phase crystallizes in addition to the previous unreported antiglass phase. The structure, microstructure, and optical properties of 65TeO2-35ZrF4Tm3+-doped glass-ceramics, were investigated in detail by means of X-ray diffraction, scanning and transmission electron microscopies, and 19F, 91Zr, and 125Te NMR, Raman, and photoluminescence spectroscopies. The crystal chemistry study of several single crystals samples by X-ray diffraction evidence that the novel phase, derived from α-UO3 type, corresponds in terms of long-range ordering inside this basic hexagonal/trigonal disordered phase (antiglass) to a complex series of modulated microphases rather than a stoichiometric compound with various superstructures analogous to those observed in the UO3-U3O8 subsystem. These results highlight the peculiar disorder-order phenomenon occurring in tellurite materials.

20.
ACS Nano ; 13(11): 12810-12815, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31618018

ABSTRACT

Nuclear magnetic resonance is one of the rare techniques able to probe selectively the ions inside the nanoporous network in supercapacitor devices. With a magnetic resonance imaging method able to detect all ions (adsorbed and nonadsorbed), we record one-dimensional concentration profiles of the active ions in supercapacitors with an electrode configuration close to that used in industry. Larger anionic concentration changes are probed upon charge and discharge in a carbide-derived carbon (CDC) with micropores smaller than 1 nm compared to a conventional nanoporous carbon (CC) with a larger distribution of pore sizes, up to 2 nm. They highlight the increased interaction of the anions with CDC and provide a better understanding of the enhanced capacitance in CDC-based supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...