Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 21(4): 904-912, 2019 04.
Article in English | MEDLINE | ID: mdl-30214067

ABSTRACT

PURPOSE: To systematically study somatic variants arising during development in the human brain across a spectrum of neurodegenerative disorders. METHODS: In this study we developed a pipeline to identify somatic variants from exome sequencing data in 1461 diseased and control human brains. Eighty-eight percent of the DNA samples were extracted from the cerebellum. Identified somatic variants were validated by targeted amplicon sequencing and/or PyroMark® Q24. RESULTS: We observed somatic coding variants present in >10% of sampled cells in at least 1% of brains. The mutational signature of the detected variants showed a predominance of C>T variants most consistent with arising from DNA mismatch repair, occurred frequently in genes that are highly expressed within the central nervous system, and with a minimum somatic mutation rate of 4.25 × 10-10 per base pair per individual. CONCLUSION: These findings provide proof-of-principle that deleterious somatic variants can affect sizeable brain regions in at least 1% of the population, and thus have the potential to contribute to the pathogenesis of common neurodegenerative diseases.


Subject(s)
Brain/metabolism , DNA Mismatch Repair/genetics , Exome/genetics , Genetic Diseases, Inborn/genetics , Brain/pathology , Genetic Diseases, Inborn/diagnosis , High-Throughput Nucleotide Sequencing , Humans , Mutation , Sequence Analysis, DNA , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...