Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 325: 136-156, 2017 Mar 05.
Article in English | MEDLINE | ID: mdl-27930998

ABSTRACT

Triketones, derived chemically from a natural phytotoxin (leptospermone), are a good example of allelochemicals as lead molecules for the development of new herbicides. Targeting a new and key enzyme involved in carotenoid biosynthesis, these latest-generation herbicides (sulcotrione, mesotrione and tembotrione) were designed to be eco-friendly and commercialized fifteen-twenty years ago. The mechanisms controlling their fate in different ecological niches as well as their toxicity and impact on different organisms or ecosystems are still under investigation. This review combines an overview of the results published in the literature on ß-triketones and more specifically, on the commercially-available herbicides and includes new results obtained in our interdisciplinary study aiming to understand all the processes involved (i) in their transfer from the soil to the connected aquatic compartments, (ii) in their transformation by photochemical and biological mechanisms but also to evaluate (iii) the impacts of the parent molecules and their transformation products on various target and non-target organisms (aquatic microorganisms, plants, soil microbial communities). Analysis of all the data on the fate and impact of these molecules, used pure, as formulation or in cocktails, give an overall guide for the assessment of their environmental risks.


Subject(s)
Herbicides/analysis , Herbicides/chemistry , Ketones/analysis , Ketones/chemistry , Cyclohexanones/analysis , Ecosystem , Ecotoxicology , Environment , Hydrogen-Ion Concentration , Mesylates/analysis , Photochemistry , Plants/drug effects , Risk Assessment , Soil , Soil Microbiology , Sulfones/analysis , Temperature , Water , Water Pollutants, Chemical/chemistry
2.
Chemosphere ; 57(10): 1543-51, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15519399

ABSTRACT

New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.


Subject(s)
Hydrocarbons, Halogenated/chemistry , Octanes/chemistry , Thermodynamics , Solubility , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...