Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Med Oncol ; 10: 1758835918786475, 2018.
Article in English | MEDLINE | ID: mdl-30046358

ABSTRACT

BACKGROUND: Cold-atmospheric plasma (CAP) is an ionized gas produced at an atmospheric pressure. The aim of this systematic review is to map the use of CAP in oncology and the implemented methodologies (cell targets, physical parameters, direct or indirect therapies). METHODS: PubMed, the International Clinical Trials Registry Platform and Google Scholar were explored until 31 December 2017 for studies regarding the use of plasma treatment in oncology (in vitro, in vivo, clinical trials). RESULTS: 190 original articles were included. Plasma jets are the most-used production systems (72.1%). Helium alone was the most-used gas (35.8%), followed by air (26.3%) and argon (22.1%). Studies were mostly in vitro (94.7%) and concerned direct plasma treatments (84.2%). The most targeted cancer cell lines are human cell lines (87.4%), in particular, in brain cancer (16.3%). CONCLUSIONS: This study highlights the multiplicity of means of production and clinical applications of the CAP in oncology. While some devices may be used directly at the bedside, others open the way for the development of new pharmaceutical products that could be generated at an industrial scale. However, its clinical use strongly needs the development of standardized reliable protocols, to determine the more efficient type of plasma for each type of cancer, and its combination with conventional treatments.

2.
PLoS One ; 10(3): e0116083, 2015.
Article in English | MEDLINE | ID: mdl-25837580

ABSTRACT

Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin) present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr) can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli) population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM) for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted) are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm), pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes). The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted) lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Lipid A/metabolism , Nitrogen/pharmacology , Animals , Aorta/cytology , Atmospheric Pressure , Cells, Cultured , Endothelial Cells/drug effects , Escherichia coli/physiology , Inflammation/etiology , Lipid A/toxicity , Mice , NF-kappa B/metabolism , Oxidation-Reduction/drug effects , Sterilization , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...