Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17501, 2024.
Article in English | MEDLINE | ID: mdl-38952987

ABSTRACT

Stridulation is used by male katydids to produce sound via the rubbing together of their specialised forewings, either by sustained or interrupted sweeps of the file producing different tones and call structures. There are many species of Orthoptera that remain undescribed and their acoustic signals are unknown. This study aims to measure and quantify the mechanics of wing vibration, sound production and acoustic properties of the hearing system in a new genus of Pseudophyllinae with taxonomic descriptions of two new species. The calling behaviour and wing mechanics of males were measured using micro-scanning laser Doppler vibrometry, microscopy, and ultrasound sensitive equipment. The resonant properties of the acoustic pinnae of the ears were obtained via µ-CT scanning and 3D printed experimentation, and numerical modelling was used to validate the results. Analysis of sound recordings and wing vibrations revealed that the stridulatory areas of the right tegmen exhibit relatively narrow frequency responses and produce narrowband calls between 12 and 20 kHz. As in most Pseudophyllinae, only the right mirror is activated for sound production. The acoustic pinnae of all species were found to provide a broadband increased acoustic gain from ~40-120 kHz by up to 25 dB, peaking at almost 90 kHz which coincides with the echolocation frequency of sympatric bats. The new genus, named Satizabalus n. gen., is here derived as a new polytypic genus from the existing genus Gnathoclita, based on morphological and acoustic evidence from one described (S. sodalis n. comb.) and two new species (S. jorgevargasi n. sp. and S. hauca n. sp.). Unlike most Tettigoniidae, Satizabalus exhibits a particular form of sexual dimorphism whereby the heads and mandibles of the males are greatly enlarged compared to the females. We suggest that Satizabalus is related to the genus Trichotettix, also found in cloud forests in Colombia, and not to Gnathoclita.


Subject(s)
Orthoptera , Wings, Animal , Animals , Male , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Colombia , Orthoptera/physiology , Orthoptera/anatomy & histology , Animal Communication , Forests , Vocalization, Animal/physiology , Acoustics , Female , Vibration
2.
J R Soc Interface ; 20(204): 20230154, 2023 07.
Article in English | MEDLINE | ID: mdl-37464801

ABSTRACT

The purpose of this study is to examine and to compare the ionic composition of the haemolymph and the ear fluid of seven species of katydids (Orthoptera: Tettigoniidae) with the aim of providing from a biochemical perspective a preliminary assessment for an insect liquid contained in the auditory organ of katydids with a hearing mechanism reminiscent of that found in vertebrates. A multi-element trace analysis by inductively coupled plasma optical-emission spectrometry was run for 16 elements for the ear liquid of seven species and the haemolymph of six of them. Based on the obtained results, it can be recognized that the ionic composition is variable among the studied insects, but sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+) are the most prominent of the dissolved inorganic cations. However, the ion concentrations between the two fluids are considerably different and the absence or low concentration of Ca2+ is a noticeable feature in the inner ear liquid. A potential relationship between the male courtship song peak frequency and the total ion (Na+, K+, Mg2+ and Ca2+) concentration of the inner ear liquid is also reported.


Subject(s)
Orthoptera , Animals , Male , Potassium
3.
Sci Rep ; 7(1): 12121, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935936

ABSTRACT

The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing discrimination from background noise and heterospecific calls. However, we present here evidence that two anurans, Brachycephalus ephippium and B. pitanga, are insensitive to the sound of their own calls. Both species produce advertisement calls outside their hearing sensitivity range and their inner ears are partly undeveloped, which accounts for their lack of high-frequency sensitivity. If unheard by the intended receivers, calls are not beneficial to the emitter and should be selected against because of the costs associated with signal production. We suggest that protection against predators conferred by their high toxicity might help to explain why calling has not yet disappeared, and that visual communication may have replaced auditory in these colourful, diurnal frogs.


Subject(s)
Anura/physiology , Vocalization, Animal , Acoustics , Animals , Anura/anatomy & histology , Ear/anatomy & histology , Ear/physiology , Female , Hearing , Male , Models, Anatomic , Sound
4.
J Exp Biol ; 220(Pt 16): 2900-2907, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28596213

ABSTRACT

Animals use sound for communication, with high-amplitude signals being selected for attracting mates or deterring rivals. High amplitudes are attained by employing primary resonators in sound-producing structures to amplify the signal (e.g. avian syrinx). Some species actively exploit acoustic properties of natural structures to enhance signal transmission by using these as secondary resonators (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal stridulation and often use specialised wing areas as primary resonators. Interestingly, Acanthacara acuta, a Neotropical bush-cricket, exhibits an unusual pronotal inflation, forming a chamber covering the wings. It has been suggested that such pronotal chambers enhance amplitude and tuning of the signal by constituting a (secondary) Helmholtz resonator. If true, the intact system - when stimulated sympathetically with broadband sound - should show clear resonance around the song carrier frequency which should be largely independent of pronotum material, and change when the system is destroyed. Using laser Doppler vibrometry on living and preserved specimens, microcomputed tomography, 3D-printed models and finite element modelling, we show that the pronotal chamber not only functions as a Helmholtz resonator owing to its intact morphology but also resonates at frequencies of the calling song on itself, making song production a three-resonator system.


Subject(s)
Animal Communication , Orthoptera/anatomy & histology , Orthoptera/physiology , Wings, Animal/anatomy & histology , Animals , Ecuador , Finite Element Analysis , Male , Printing, Three-Dimensional , Vibration , Wings, Animal/physiology , X-Ray Microtomography
5.
R Soc Open Sci ; 4(5): 170171, 2017 May.
Article in English | MEDLINE | ID: mdl-28573026

ABSTRACT

Frequency analysis in the mammalian cochlea depends on the propagation of frequency information in the form of a travelling wave (TW) across tonotopically arranged auditory sensilla. TWs have been directly observed in the basilar papilla of birds and the ears of bush-crickets (Insecta: Orthoptera) and have also been indirectly inferred in the hearing organs of some reptiles and frogs. Existing experimental approaches to measure TW function in tetrapods and bush-crickets are inherently invasive, compromising the fine-scale mechanics of each system. Located in the forelegs, the bush-cricket ear exhibits outer, middle and inner components; the inner ear containing tonotopically arranged auditory sensilla within a fluid-filled cavity, and externally protected by the leg cuticle. Here, we report bush-crickets with transparent ear cuticles as potential model species for direct, non-invasive measuring of TWs and tonotopy. Using laser Doppler vibrometry and spectroscopy, we show that increased transmittance of light through the ear cuticle allows for effective non-invasive measurements of TWs and frequency mapping. More transparent cuticles allow several properties of TWs to be precisely recovered and measured in vivo from intact specimens. Our approach provides an innovative, non-invasive alternative to measure the natural motion of the sensilla-bearing surface embedded in the intact inner ear fluid.

6.
J Exp Biol ; 220(Pt 6): 1112-1121, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28082619

ABSTRACT

Male grigs, bush crickets and crickets produce mating calls by tegminal stridulation: the scraping together of modified forewings functioning as sound generators. Bush crickets (Tettigoniidae) and crickets (Gryllinae) diverged some 240 million years ago, with each lineage developing unique characteristics in wing morphology and the associated mechanics of stridulation. The grigs (Prophalangopsidae), a relict lineage more closely related to bush crickets than to crickets, are believed to retain plesiomorphic features of wing morphology. The wing cells widely involved in sound production, such as the harp and mirror, are comparatively small, poorly delimited and/or partially filled with cross-veins. Such morphology is similarly observed in the earliest stridulating ensiferans, for which stridulatory mechanics remains poorly understood. The grigs, therefore, are of major importance to investigate the early evolutionary stages of tegminal stridulation, a critical innovation in the evolution of the Orthoptera. The aim of this study is to appreciate the degree of specialization on grig forewings, through identification of sound radiating areas and their properties. For well-grounded comparisons, homologies in wing venation (and associated areas) of grigs and bush crickets are re-evaluated. Then, using direct evidence, this study confirms the mirror cell, in association with two other areas (termed 'neck' and 'pre-mirror'), as the acoustic resonator in the grig Cyphoderris monstrosa Despite the use of largely symmetrical resonators, as found in field crickets, analogous features of stridulatory mechanics are observed between C. monstrosa and bush crickets. Both morphology and function in grigs represents transitional stages between unspecialized forewings and derived conditions observed in modern species.


Subject(s)
Gryllidae/anatomy & histology , Gryllidae/physiology , Vocalization, Animal , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Acoustics , Animals , Biological Evolution , Female , Male , Sound
7.
PLoS One ; 9(6): e98708, 2014.
Article in English | MEDLINE | ID: mdl-24901234

ABSTRACT

This article reports the discovery of a new genus and three species of predaceous katydid (Insecta: Orthoptera) from Colombia and Ecuador in which males produce the highest frequency ultrasonic calling songs so far recorded from an arthropod. Male katydids sing by rubbing their wings together to attract distant females. Their song frequencies usually range from audio (5 kHz) to low ultrasonic (30 kHz). However, males of Supersonus spp. call females at 115 kHz, 125 kHz, and 150 kHz. Exceeding the human hearing range (50 Hz-20 kHz) by an order of magnitude, these insects also emit their ultrasound at unusually elevated sound pressure levels (SPL). In all three species these calls exceed 110 dB SPL rms re 20 µPa (at 15 cm). Males of Supersonus spp. have unusually reduced forewings (<0.5 mm(2)). Only the right wing radiates appreciable sound, the left bears the file and does not show a particular resonance. In contrast to most katydids, males of Supersonus spp. position and move their wings during sound production so that the concave aspect of the right wing, underlain by the insect dorsum, forms a contained cavity with sharp resonance. The observed high SPL at extreme carrier frequencies can be explained by wing anatomy, a resonant cavity with a membrane, and cuticle deformation.


Subject(s)
Orthoptera/anatomy & histology , Orthoptera/physiology , Sound , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Animals , Female , Male , Orthoptera/classification , Phenotype , Ultrasonics
8.
Rev. biol. trop ; 62(supl.1): 243-256, feb. 2014. mapas, tab
Article in Spanish | LILACS, SaludCR | ID: lil-753736

ABSTRACT

The Psocoptera fauna of Gorgona National Natural Park, Colombian pacific, consists of 75 species in 42 genera and 21 families. 1 730 specimens were collected in the period November 2007-June 2011. Five families, 20 genera and nine species are new records for Colombia, and two genera and ten species are new to science. The psocid fauna of the island constitutes an extension of the continental fauna. Rev. Biol. Trop. 62 (Suppl. 1): 243-256. Epub 2014 February 01.


La fauna de Psocoptera (Psocodea) del Parque Nacional Natural Gorgona, consiste de 75 especies en 42 géneros y 21 familias. 1 730 especimenes fueron recolectados en el periodo entre noviembre de 2007 y junio de 2011. Cinco familias, 20 géneros y nueve especies son nuevos registros para Colombia, y dos géneros y diez especies son nuevos para la ciencia. La fauna de Psocoptera de la isla constituye una extensión de la fauna continental.


Subject(s)
Species Specificity , Phthiraptera/anatomy & histology , Phthiraptera/classification , Colombia
SELECTION OF CITATIONS
SEARCH DETAIL
...