Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
3D Print Addit Manuf ; 10(5): 1101-1109, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37886413

ABSTRACT

The ability to create cell-laden fluidic models that mimic the geometries and physical properties of vascularized tissue would be extremely beneficial to the study of disease etiologies and future therapies, including in the case of cancer where there is increasing interest in studying alterations to the microvasculature. Engineered systems can present significant advantages over animal studies, alleviating challenges associated with variable complexity and control. Three-dimensional (3D)-printable tissue-mimicking hydrogels can offer an alternative, where control of the biophysical properties of the materials can be achieved. Hydrogel-based systems that can recreate complex 3D structures and channels with diameters <500 µm are challenging to produce. We present a noncytotoxic photo-responsive hydrogel that supports 3D printing of complex 3D structures with microchannels down to 150 µm in diameter. Fine tuning of the 3D-printing process has allowed the production of complex structures, where for demonstration purposes we present a helical channel with diameters between 250 and 370 µm around a central channel of 150 µm in diameter in materials with mechanical and acoustic properties that closely replicate those of tissue. The ability to control and accurately reproduce the complex features of the microvasculature has value across a wide range of biomedical applications, especially when the materials involved accurately mimic the physical properties of tissue. An approach that is additionally cell compatible provides a unique setup that can be exploited to study aspects of biomedical research with an unprecedented level of accuracy.

2.
Mater Today Bio ; 20: 100641, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37179535

ABSTRACT

Collagen type I lacks affinity for growth factors (GFs) and yet it is clinically used to deliver bone morphogenic protein 2 (BMP-2), a potent osteogenic growth factor. To mitigate this lack of affinity, supra-physiological concentrations of BMP-2 are loaded in collagen sponges leading to uncontrolled BMP-2 leakage out of the material. This has led to important adverse side effects such as carcinogenesis. Here, we design recombinant dual affinity protein fragments, produced in E. Coli, which contain two regions, one that spontaneously binds to collagen and a second one that binds BMP-2. By adding the fragment to collagen sponges, BMP-2 is sequestered enabling solid phase presentation of BMP-2. We demonstrate osteogenesis in vivo with ultra-low doses of BMP-2. Our protein technology enhances the biological activity of collagen without using complex chemistries or changing the manufacturing of the base material and so opens a pathway to clinical translation.

3.
J Clin Periodontol ; 48(12): 1613-1623, 2021 12.
Article in English | MEDLINE | ID: mdl-34517437

ABSTRACT

AIM: Platelet-rich plasma (PRP) is an autologous blood-derived material that has been used to enhance bone regeneration. Clinical studies, however, reported inconsistent outcomes. This study aimed to assess the effect of changes in leucocyte and PRP (L-PRP) composition on bone defect healing. MATERIALS AND METHODS: L-PRPs were prepared using different centrifugation methods and their regenerative potential was assessed in an in-vivo rat model. Bilateral critical-size tibial bone defects were created and filled with single-spin L-PRP, double-spin L-PRP, or filtered L-PRP. Empty defects and defects treated with collagen scaffolds served as controls. Rats were euthanized after 2 weeks, and their tibias were collected and analysed using micro-CT and histology. RESULTS: Double-spin L-PRP contained higher concentrations of platelets than single-spin L-PRP and filtered L-PRP. Filtration of single-spin L-PRP resulted in lower concentrations of minerals and metabolites. In vivo, double-spin L-PRP improved bone healing by significantly reducing the size of bone defects (1.08 ± 0.2 mm3 ) compared to single-spin L-PRP (1.42 ± 0.27 mm3 ) or filtered L-PRP (1.38 ± 0.28 mm3 ). There were fewer mast cells, lymphocytes, and macrophages in defects treated with double-spin L-PRP than in those treated with single-spin or filtered L-PRP. CONCLUSION: The preparation method of L-PRP affects their composition and potential to regenerate bone.


Subject(s)
Platelet-Rich Plasma , Animals , Bone Regeneration , Collagen , Connective Tissue , Rats , Tibia
4.
Mater Sci Eng C Mater Biol Appl ; 127: 112205, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225857

ABSTRACT

The ideal bone substitute material should be mechanically strong, biocompatible with a resorption rate matching the rate of new bone formation. Brushite (dicalcium phosphate dihydrate) cement is a promising bone substitute material but with limited resorbability and mechanical properties. To improve the resorbability and mechanical performance of brushite cements, we incorporated gypsum (calcium sulfate dihydrate) and diazonium-treated polyglactin fibers which are well-known for their biocompatibility and bioresorbability. Here we show that by combining brushite and gypsum, we were able to fabricate biocompatible composite cements with high fracture toughness (0.47 MPa·m1/2) and a resorption rate that matched the rate of new bone formation. Adding functionalized polyglactin fibers to this composite cement further improved the fracture toughness up to 1.00 MPa·m1/2. XPS and SEM revealed that the improvement in fracture toughness is due to the strong interfacial bonding between the functionalized fibers and the cement matrix. This study shows that adding gypsum and functionalized polyglactin fibers to brushite cements results in composite biomaterials that combine high fracture toughness, resorbability, and biocompatibility, and have great potential for bone regeneration.


Subject(s)
Calcium Phosphates , Calcium Sulfate , Bone Cements , Materials Testing
5.
ACS Appl Bio Mater ; 3(8): 5056-5066, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32904797

ABSTRACT

Brushite cements are promising bone regeneration materials with limited biological and mechanical properties. Here, we engineer a mechanically improved brushite-collagen type I cement with enhanced biological properties by use of chiral chemistry; d- and l-tartaric acid were used to limit crystal growth and increase the mechanical properties of brushite-collagen cements. The impact of the chiral molecules on the cements was examined with Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). A 3-point bend test was utilized to study the fracture toughness, and cell attachment and morphology studies were carried out to demonstrate biocompatibility. XRD and SEM analyses showed that l-, but not d-tartaric acid, significantly restrained brushite crystal growth by binding to the {010} plane of the mineral and increased brushite crystal packing and the collagen interaction area. l-Tartaric acid significantly improved fracture toughness compared to traditional brushite by 30%. Collagen significantly enhanced cell morphology and focal adhesion expression on l-tartaric acid-treated brushite cements.

SELECTION OF CITATIONS
SEARCH DETAIL
...