Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Interact Cardiovasc Thorac Surg ; 34(5): 833-840, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35106555

ABSTRACT

OBJECTIVES: Rapid evaporative ionization mass spectrometry (REIMS) can discriminate aneurysmal from normal aortic tissue. Our objective in this work was to probe the integrity of acute dissection tissue using biomechanical, biochemical and histological techniques and demonstrate that REIMS can be used to discriminate identified differences. METHODS: Human aortic tissue was obtained from patients undergoing surgery for acute aortic dissection. Biomechanical, biochemical and histological assessment was carried out to probe mechanical properties and elastin, collagen and glycosaminoglycan composition of the tissue. Monopolar electrocautery was applied to samples and surgical aerosol aspirated and analysed by REIMS to produce mass spectral data. RESULTS: Tissue was obtained from 10 patients giving rise to 26 tissue pieces: 10 false lumen (FL), 10 dissection flap and 6 true lumen samples. Models generated from biomechanical and biochemical data showed that FL tissue was distinct from true lumen and dissection flap tissue. REIMS identified the same pattern being able to classify tissue types with 72.4% accuracy and 69.3% precision. Further analysis of REIMS data for FL tissue suggested patients formed 3 distinct clusters. Histological and biochemical assessment revealed patterns of extracellular matrix degradation within the clusters that are associated with altered tissue integrity identified using biomechanical testing. CONCLUSIONS: Structural integrity of the FL in acute Type A dissection could dictate future clinical distal disease progression. REIMS can detect differences in tissue integrity, supporting its development as a point-of-care test to guide surgical intraoperative decision-making.


Subject(s)
Aorta , Aortic Dissection , Aortic Dissection/diagnosis , Aortic Dissection/surgery , Humans , Mass Spectrometry/methods , Point-of-Care Testing
2.
J Am Soc Mass Spectrom ; 33(3): 420-435, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35099954

ABSTRACT

Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.


Subject(s)
Aurora Kinase A , Ion Mobility Spectrometry/methods , Models, Molecular , Aurora Kinase A/analysis , Aurora Kinase A/chemistry , Humans , Mass Spectrometry/methods , Protein Conformation , Protein Stability
3.
Eur J Cardiothorac Surg ; 60(3): 562-568, 2021 09 11.
Article in English | MEDLINE | ID: mdl-33842942

ABSTRACT

OBJECTIVES: Many intraoperative decisions regarding the extent of thoracic aortic surgery are subjective and are based on the appearance of the aorta, perceived surgical risks and likelihood of early recurrent disease. Our objective in this work was to carry out a cross-sectional study to demonstrate that rapid evaporative ionization mass spectrometry (REIMS) of electrosurgical aerosol is able to empirically discriminate ex vivo aneurysmal human thoracic aorta from normal aorta, thus providing supportive evidence for the development of the technique as a point-of-care test guiding intraoperative surgical decision-making. METHODS: Human aortic tissue was obtained from patients undergoing surgery for thoracic aortic aneurysms (n = 44). Normal aorta was obtained from a mixture of post-mortem and punch biopsies from patients undergoing coronary surgery (n = 13). Monopolar electrocautery was applied to samples and surgical aerosol aspirated and analysed by REIMS to produce mass spectral data. RESULTS: Models generated from REIMS data can discriminate aneurysmal from normal aorta with accuracy and precision of 88.7% and 85.1%, respectively. In addition, further analysis investigating aneurysmal tissue from patients with bicuspid and tricuspid aortic valves was discriminated from normal tissue and each other with accuracies and precision of 93.5% and 91.4% for control, 83.8% and 76.7% for bicuspid aortic valve and 89.3% and 86.0% for tricuspid aortic valve, respectively. CONCLUSIONS: Analysis of electrosurgical aerosol from ex vivo aortic tissue using REIMS allowed us to discriminate aneurysmal from normal aorta, supporting its development as a point-of-care test (Intelligent Knife) for guiding surgical intraoperative decision-making.


Subject(s)
Aorta , Aortic Valve , Aorta/surgery , Cross-Sectional Studies , Humans , Mass Spectrometry , Point-of-Care Testing
4.
Biochem J ; 478(3): 647-668, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33459338

ABSTRACT

Pseudomonas aeruginosa has recently been highlighted by the World Health Organisation (WHO) as a major threat with high priority for the development of new therapies. In severe P. aeruginosa infections, the phospholipase activity of the type 3 secretion system toxin, ExoU, induces lysis of target host cells and results in the poorest clinical outcomes. We have developed an integrated pipeline to evaluate small molecule inhibitors of ExoU in vitro and in cultured cell models, including a disease-relevant corneal epithelial (HCE-T) scratch and infection model using florescence microscopy and cell viability assays. Compounds Pseudolipasin A, compound A and compound B were effective in vitro inhibitors of ExoU and mitigated P. aeruginosa ExoU-dependent cytotoxicity after infection of HCE-T cells at concentrations as low as 0.5 µM. Addition of the antimicrobial moxifloxacin controlled bacterial load, allowing these assays to be extended from 6 h to 24 h. P. aeruginosa remained cytotoxic to HCE-T cells with moxifloxacin, present at the minimal inhibitory concentration for 24 h, but, when used in combination with either Pseudolipasin A, compound A or compound B, a greater amount of viable cells and scratch healing were observed. Thus, our pipeline provides evidence that ExoU inhibitors could be used in combination with certain antimicrobials as a novel means to treat infections due to ExoU producing P. aeruginosa, as well as the means to identify more potent ExoU inhibitors for future therapeutics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Evaluation, Preclinical/methods , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cells, Cultured , Drug Synergism , Epithelial Cells , Epithelium, Corneal/cytology , HeLa Cells , High-Throughput Screening Assays , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Moxifloxacin/pharmacology , Protein Conformation , Recombinant Proteins/drug effects , Transfection
5.
Open Biol ; 10(11): 200196, 2020 11.
Article in English | MEDLINE | ID: mdl-33234068

ABSTRACT

There is increasing emphasis on the use of new analytical approaches in subject analysis and classification, particularly in respect to minimal sample preparation. Here, we demonstrate that rapid evaporative ionization mass spectrometry (REIMS), a method that captures metabolite mass spectra after rapid combustive degradation of an intact biological specimen, generates informative mass spectra from several arthropods, and more specifically, is capable of discerning differences between species and sex of several adult Drosophila species. A model including five Drosophila species, built using pattern recognition, achieves high correct classification rates (over 90%) using test datasets and is able to resolve closely related species. The ease of discrimination of male and female specimens also demonstrates that sex-specific differences reside in the REIMS metabolite patterns, whether analysed across all five species or specifically for D. melanogaster. Further, the same approach can correctly discriminate and assign Drosophila species at the larval stage, where these are morphologically highly similar or identical. REIMS offers a novel approach to insect typing and analysis, requiring a few seconds of data acquisition per sample and has considerable potential as a new tool for the field biologist.


Subject(s)
Drosophila/classification , Mass Spectrometry/methods , Animals , Data Analysis , Female , Male , Species Specificity
6.
Rapid Commun Mass Spectrom ; 35 Suppl 2: e8670, 2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31760669

ABSTRACT

RATIONALE: There is increasing interest in methods of direct analysis mass spectrometry that bypass complex sample preparation steps. METHODS: One of the most interesting new ionisation methods is rapid evaporative ionisation mass spectrometry (REIMS) in which samples are vapourised and the combustion products are subsequently ionised and analysed by mass spectrometry (Synapt G2si). The only sample preparation required is the recovery of a cell pellet from a culture that can be analysed immediately. RESULTS: We demonstrate that REIMS can be used to monitor the expression of heterologous recombinant proteins in Escherichia coli. Clear segregation was achievable between bacteria harvesting plasmids that were strongly expressed and other cultures in which the plasmid did not result in the expression of large amounts of recombinant product. CONCLUSIONS: REIMS has considerable potential as a near-instantaneous monitoring tool for protein production in a biotechnology environment.

7.
BMC Biol ; 17(1): 66, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31412863

ABSTRACT

BACKGROUND: We describe a new approach to the recovery of information from faecal samples, based on the analysis of the molecular signature generated by rapid evaporative ionisation mass spectrometry (REIMS). RESULTS: Faecal pellets from five different rodent species were analysed by REIMS, and complex mass spectra were acquired rapidly (typically a few seconds per sample). The uninterpreted mass spectra (signatures) were then used to seed linear discriminant analysis and classification models based on random forests. It was possible to classify each species of origin with a high rate of accuracy, whether faeces were from animals maintained under standard laboratory conditions or wild-caught. REIMS signatures were stable to prior storage of the faecal material under a range of different conditions and were not altered rapidly or radically by changes in diet. Further, within species, REIMS signatures could be used to discriminate faeces from adult versus juvenile mice, male versus female mice and those from three different laboratory strains. CONCLUSIONS: REIMS offers a completely novel method for the rapid analysis of faecal samples, extending faecal analysis (previously focused on DNA) to an assessment of phenotype, and has considerable potential as a new tool in the armamentarium of the field biologist.


Subject(s)
Feces/chemistry , Mass Spectrometry/veterinary , Rodentia/classification , Animals , Mass Spectrometry/methods
8.
Nat Commun ; 9(1): 2635, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29980663

ABSTRACT

Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.


Subject(s)
Adaptation, Physiological , Bacterial Proteins/metabolism , Biological Evolution , Host-Pathogen Interactions , Pseudomonas aeruginosa/metabolism , Transcription Factors/metabolism , A549 Cells , Adaptation, Physiological/drug effects , Animals , Anti-Infective Agents/pharmacology , Bacterial Adhesion/drug effects , Colony Count, Microbial , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Down-Regulation , Epithelial Cells/metabolism , Fimbriae, Bacterial/drug effects , Fimbriae, Bacterial/metabolism , Host-Pathogen Interactions/drug effects , Humans , Lung/microbiology , Lung/pathology , Mice , Microbial Sensitivity Tests , Models, Biological , Movement , Muramidase/metabolism , Mutation/genetics , Principal Component Analysis , Proteomics , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification
9.
Anal Chem ; 87(13): 6794-800, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26066713

ABSTRACT

Previously we have shown that liquid extraction surface analysis (LESA) mass spectrometry is suitable for the analysis of intact proteins from a range of biological substrates. Here we show that LESA mass spectrometry may be coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for top-down protein analysis directly from thin tissue sections (mouse liver, mouse brain) and from bacterial colonies (Escherichia coli) growing on agar. Incorporation of FAIMS results in significant improvements in signal-to-noise and reduced analysis time. Abundant protein signals are observed in single scan mass spectra. In addition, FAIMS enables gas-phase separation of molecular classes, for example, lipids and proteins, enabling improved analysis of both sets of species from a single LESA extraction.


Subject(s)
Mass Spectrometry/methods , Proteins/analysis , Animals , Mice , Surface Properties
10.
J Am Soc Mass Spectrom ; 25(11): 1953-61, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25183224

ABSTRACT

Liquid extraction surface analysis mass spectrometry (LESA MS) has the potential to become a useful tool in the spatially-resolved profiling of proteins in substrates. Here, the approach has been applied to the analysis of thin tissue sections from human liver. The aim was to determine whether LESA MS was a suitable approach for the detection of protein biomarkers of nonalcoholic liver disease (nonalcoholic steatohepatitis, NASH), with a view to the eventual development of LESA MS for imaging NASH pathology. Two approaches were considered. In the first, endogenous proteins were extracted from liver tissue sections by LESA, subjected to automated trypsin digestion, and the resulting peptide mixture was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) (bottom-up approach). In the second (top-down approach), endogenous proteins were extracted by LESA, and analyzed intact. Selected protein ions were subjected to collision-induced dissociation (CID) and/or electron transfer dissociation (ETD) mass spectrometry. The bottom-up approach resulted in the identification of over 500 proteins; however identification of key protein biomarkers, liver fatty acid binding protein (FABP1), and its variant (Thr→Ala, position 94), was unreliable and irreproducible. Top-down LESA MS analysis of healthy and diseased liver tissue revealed peaks corresponding to multiple (~15-25) proteins. MS/MS of four of these proteins identified them as FABP1, its variant, α-hemoglobin, and 10 kDa heat shock protein. The reliable identification of FABP1 and its variant by top-down LESA MS suggests that the approach may be suitable for imaging NASH pathology in sections from liver biopsies.


Subject(s)
Liquid-Liquid Extraction/methods , Liver Diseases/metabolism , Liver/chemistry , Proteins/analysis , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Humans , Molecular Sequence Data , Proteins/chemistry , Sequence Alignment
11.
Anal Chem ; 85(15): 7146-53, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23879734

ABSTRACT

Mass spectrometry imaging is a powerful method for imaging and in situ characterization of lipids in thin tissue sections. Structural elucidation of lipids is often achieved via collision induced dissociation, and lithium-lipid adducts have been widely reported as providing the most structurally informative fragment ions. We present a method for the incorporation of lithium salts into tissue imaging experiments via fixation of samples in formal lithium solutions. The method is suitable for preparation of single tissue sections, or as an immersion fixation method for whole tissue blocks or organs prior to sectioning. We compare lithium adduct detection and MALDI-MSI of murine brain from analysis of tissues prepared in different ways. Tissues prepared in formal solutions containing lithium or sodium salts before coating in matrix via air-spray deposition are compared with fresh samples coated in lithium-doped matrix preparations by either dry-coating or air-spray deposition. Sample preparation via fixation in formal lithium is shown to yield the highest quality images of lithium adducts, resulting in acquisition of more informative product ion spectra in MALDI MS/MS profiling and imaging experiments. Finally, the compatibility of formal lithium solutions with standard histological staining protocols (hemotoxylin and eosin, Van Giessen and Oil Red O) is demonstrated in a study of human liver tissue.


Subject(s)
Lipid Metabolism , Lithium/metabolism , Mass Spectrometry , Tissue Fixation/methods , Humans , Liver/metabolism , Molecular Imaging , Staining and Labeling
12.
Phytochemistry ; 77: 110-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22386577

ABSTRACT

Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.


Subject(s)
Arabidopsis/chemistry , Glucosinolates/chemistry , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Flowers/chemistry , Flowers/metabolism , Flowers/ultrastructure , Glucosinolates/analysis , Glucosinolates/metabolism , Imidoesters/analysis , Imidoesters/chemistry , Imidoesters/metabolism , Indoles/analysis , Indoles/chemistry , Indoles/metabolism , Microscopy, Electron, Scanning , Oximes , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfoxides , Sulfur/analysis , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...