Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 29(48): 485706, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29120866

ABSTRACT

The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7 × 104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

2.
Opt Express ; 22(15): 17959-67, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25089415

ABSTRACT

The Temperature dependence of the exciton radiative decay time in ZnO nanorods has been investigated, which is associated with the density of states for the intra-relaxation of thermally excited excitons. The photoluminescence decay time was calibrated by using the photoluminescence intensity in order to obtain the radiative decay time. In the absence of an external magnetic field, we have confirmed that the radiative decay time increased with temperature in a similar manner to that seen in bulk material (∼ T1.5). Under an external magnetic field of 6 T parallel to the c-axis, we found that the power coefficient of the radiative decay time with temperature decreased (∼ T1.3) when compared to that in the absence of a magnetic field. This result can be attributed to an enhancement of the effective mass perpendicular to the magnetic field and a redshift of the center-of-mass exciton as a consequence of perturbation effects in the weak-field regime.

3.
Nanoscale Res Lett ; 5(10): 1692-7, 2010 Jul 24.
Article in English | MEDLINE | ID: mdl-21076695

ABSTRACT

The growth of inclined GaAs nanowires (NWs) during molecular beam epitaxy (MBE) on the rotating substrates is studied. The growth model provides explicitly the NW length as a function of radius, supersaturations, diffusion lengths and the tilt angle. Growth experiments are carried out on the GaAs(211)A and GaAs(111)B substrates. It is found that 20° inclined NWs are two times longer in average, which is explained by a larger impingement rate on their sidewalls. We find that the effective diffusion length at 550°C amounts to 12 nm for the surface adatoms and is more than 5,000 nm for the sidewall adatoms. Supersaturations of surface and sidewall adatoms are also estimated. The obtained results show the importance of sidewall adatoms in the MBE growth of NWs, neglected in a number of earlier studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...