Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Mol Genet Metab ; 143(1-2): 108543, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39047302

ABSTRACT

Phenylketonuria (PKU, OMIM 261600) is a genetic disorder caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). If left untreated, PKU leads to systemic phenylalanine (Phe) accumulation, which can result in irreversible brain damage and intellectual disabilities. In the last 60 years, early and strict dietary restriction of phenylalanine (Phe) intake proved to prevent the severe clinical phenotype of untreated PKU. While the specific mechanisms through which phenylalanine causes brain damage are still poorly understood, preclinical models have been deeply explored to characterize the neurotoxic effect of Phe on neurodevelopmental processes. At the same time, that on the aging brain still needs to be explored. In the brain of untreated PAHEnu2(-/-) mouse, we previously reported a reduction of myelin basic protein (MBP) during postnatal development up to 60 PND. Later in the diseased mouse's life, a spontaneous and persistent restoration of MBP was detected. In this present longitudinal study, ranging from 14 to 540 post-natal days (PND) of untreated PAHEnu2(-/-) mice, we further investigated: a) the long-life consistency of two Phe-related brain metabolic alterations, such as large neutral amino acids (LNAA) and biogenic amine neurotransmitters' depletion; b) the outcome of locomotor functions during the same life span; c) the integrity of myelin as assessed ex vivo by central (hippocampus) and peripheral (extensor digitorum longus-sciatic nerve) action potential conduction velocities. In contrast with the results of other studies, brain Leu, Ile, and Val concentrations were not significantly altered in the brain PAHEnu2(-/-) mouse. On the other hand, 3-O-Methyldopa (3-OMD, a biomarker of L-DOPA), serotonin, and its associated metabolites were reduced throughout most of the considered time points, with consistent reductions observed prevalently from 14 to 60 PND. Normal saltatory conduction was restored after 60 PND and remained normal at the last examination at 360 PND, resulting nonetheless in a persistent locomotor impairment throughout a lifetime. These new findings contribute to laying the foundations for the preclinical characterization of aging in PKU, confirming neurotransmitter defects as consistent metabolic traits. LNAAs have a minor role, if any, in brain damage pathogenesis. Transient myelin synthesis failure may impact brain connectivity during postnatal development but not nervous signal conduction.

2.
J Clin Med ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792298

ABSTRACT

COVID-19 has been a challenging outbreak to face, with millions of deaths among the globe. Acute respiratory failure due to interstitial pneumonia was the leading cause of death other than prothrombotic activation and complications. Lung ultrasound (LUS) and point-of-care ultrasound (POCUS) are widely used not only to triage, to identify, and to monitor lungs involvement but also to assess hemodynamic status and thrombotic and hemorrhagic complications, mainly in critically ill patients. POCUS has gained growing consideration due to its bedside utilization, reliability, and reproducibility even in emergency settings especially in unstable patients. In this narrative review, we aim to describe LUS and POCUS utilization in COVID-19 infection based on the literature found on this topic. We reported the LUS patterns of COVID-19 pulmonary infection, the diagnostic accuracy with respect to CT lung scan, its prognostic value, the variety of scores and protocols proposed, and the utilization of POCUS to investigate the extra-lung complications.

3.
J Clin Med ; 13(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38337444

ABSTRACT

Acute respiratory failure (ARF) is a challenging condition that clinicians, especially in emergency settings, have to face frequently. Especially in emergency settings, many underlying diseases can lead to ARF and life-threatening conditions have to be promptly assessed and correctly treated to avoid unfavorable outcomes. In recent years, point-of-care ultrasound (POCUS) gained growing consideration due to its bedside utilization, reliability and reproducibility even in emergency settings especially in unstable patients. Research on POCUS application to assess ARF has been largely reported mainly with observational studies showing heterogeneous results from many different applications. This narrative review describes the wide potentiality of POCUS to face airways and breathing life-threatening conditions such as upper airway management, pulmonary and pleural pathologies and diaphragm impairment. We conducted extensive research of the literature to report from major studies to case reports deemed useful in practical clinical utilization of POCUS in ARF. Due to the huge amount of the literature found, we focused on airways and breathing assessment trying to systematize the evidence according to clinical care of ARF in emergency settings. Further studies, possibly trials, should determine how POCUS is crucial in clinical practice in terms of standard of care improvements, patient safety and cost-benefit analysis.

4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108630

ABSTRACT

The midbrain raphe serotonin (5HT) neurons provide the main ascending serotonergic projection to the forebrain, including hippocampus, which has a role in the pathophysiology of depressive disorder. Serotonin 5HT1A receptor (R) activation at the soma-dendritic level of serotonergic raphe neurons and glutamatergic hippocampal pyramidal neurons leads to a decrease in neuronal firing by activation of G protein-coupled inwardly-rectifying potassium (GIRK) channels. In this raphe-hippocampal serotonin neuron system, the existence of 5HT1AR-FGFR1 heteroreceptor complexes has been proven, but the functional receptor-receptor interactions in the heterocomplexes have only been investigated in CA1 pyramidal neurons of control Sprague Dawley (SD) rats. In the current study, considering the impact of the receptor interplay in developing new antidepressant drugs, the effects of 5HT1AR-FGFR1 complex activation were investigated in hippocampal pyramidal neurons and in midbrain dorsal raphe serotonergic neurons of SD rats and of a genetic rat model of depression (the Flinders Sensitive Line (FSL) rats of SD origin) using an electrophysiological approach. The results showed that in the raphe-hippocampal 5HT system of SD rats, 5HT1AR-FGFR1 heteroreceptor activation by specific agonists reduced the ability of the 5HT1AR protomer to open the GIRK channels through the allosteric inhibitory interplay produced by the activation of the FGFR1 protomer, leading to increased neuronal firing. On the contrary, in FSL rats, FGFR1 agonist-induced inhibitory allosteric action at the 5HT1AR protomer was not able to induce this effect on GIRK channels, except in CA2 neurons where we demonstrated that the functional receptor-receptor interaction is needed for producing the effect on GIRK. In keeping with this evidence, hippocampal plasticity, evaluated as long-term potentiation induction ability in the CA1 field, was impaired by 5HT1AR activation both in SD and in FSL rats, which did not develop after combined 5HT1AR-FGFR1 heterocomplex activation in SD rats. It is therefore proposed that in the genetic FSL model of depression, there is a significant reduction in the allosteric inhibition exerted by the FGFR1 protomer on the 5HT1A protomer-mediated opening of the GIRK channels in the 5HT1AR-FGFR1 heterocomplex located in the raphe-hippocampal serotonin system. This may result in an enhanced inhibition of the dorsal raphe 5HT nerve cell and glutamatergic hippocampal CA1 pyramidal nerve cell firing, which we propose may have a role in depression.


Subject(s)
Dorsal Raphe Nucleus , Serotonin , Animals , Rats , Depression/genetics , Hippocampus , Rats, Sprague-Dawley , Serotonergic Neurons , Receptors, Serotonin/metabolism
5.
Leukemia ; 37(5): 1068-1079, 2023 05.
Article in English | MEDLINE | ID: mdl-36928007

ABSTRACT

Clonal myeloproliferation and development of bone marrow (BM) fibrosis are the major pathogenetic events in myelofibrosis (MF). The identification of novel antifibrotic strategies is of utmost importance since the effectiveness of current therapies in reverting BM fibrosis is debated. We previously demonstrated that osteopontin (OPN) has a profibrotic role in MF by promoting mesenchymal stromal cells proliferation and collagen production. Moreover, increased plasma OPN correlated with higher BM fibrosis grade and inferior overall survival in MF patients. To understand whether OPN is a druggable target in MF, we assessed putative inhibitors of OPN expression in vitro and identified ERK1/2 as a major regulator of OPN production. Increased OPN plasma levels were associated with BM fibrosis development in the Romiplostim-induced MF mouse model. Moreover, ERK1/2 inhibition led to a remarkable reduction of OPN production and BM fibrosis in Romiplostim-treated mice. Strikingly, the antifibrotic effect of ERK1/2 inhibition can be mainly ascribed to the reduced OPN production since it could be recapitulated through the administration of anti-OPN neutralizing antibody. Our results demonstrate that OPN is a novel druggable target in MF and pave the way to antifibrotic therapies based on the inhibition of ERK1/2-driven OPN production or the neutralization of OPN activity.


Subject(s)
Osteopontin , Primary Myelofibrosis , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/metabolism , Primary Myelofibrosis/pathology , Animals , Mice , Disease Models, Animal , Signal Transduction/drug effects , Osteopontin/antagonists & inhibitors , Osteopontin/blood , Osteopontin/metabolism , Fibrosis/drug therapy , Humans
6.
J Clin Med ; 11(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36233632

ABSTRACT

Antithrombotic therapy may affect outcomes in major trauma but its role is not fully understood. We aimed to investigate adverse outcomes among those with and without antithrombotic treatment in major trauma. Material and methods: This is a retrospective study conducted at the Emergency Department (ED) of the University Hospital of Genoa, a tertiary trauma center, including all major trauma between January 2019 and December 2020. Adverse outcomes were reviewed among those without antithrombotic treatment (Group 0), on antiplatelet treatment (Group 1), and on anticoagulant treatment (Group 2). Results: We reviewed 349 electronic charts for full analysis. Group 0 were n = 310 (88.8%), Group 1 were n = 26 (7.4%), and Group 2 were n = 13 (3.7%). In-hospital death and ICU admission, respectively, were: n = 16 (5.6%) and n = 81 (26%) in Group 0, none and n = 6 (25%) in Group 1, and n = 2 (15.8%) and n = 4 (30.8%) in Group 2 (p = 0.123-p = 0.874). Altered INR (OR 5.2) and increasing D-dimer levels (AUC: 0.81) correlated to increased mortality. Discussion: Group 2 showed higher mortality than Group 0 and Group 1, however Group 2 had fewer active treatments. Of clotting factors, only altered INR and elevated D-dimer levels were significantly correlated to adverse outcomes. Conclusions: Anticoagulant but not antiplatelet treatment seems to produce the worst outcomes in major trauma.

7.
Front Physiol ; 13: 948985, 2022.
Article in English | MEDLINE | ID: mdl-36148308

ABSTRACT

Background: Incomplete functional recovery following traumatic peripheral nerve injury is common, mainly because not all axons successfully regenerate and reinnervate target muscles. Exercise can improve functional outcomes increasing the terminal sprouting during the muscle reinnervation. However, exercise is not a panacea per se. Indeed, the type of exercise adopted dramatically impacts the outcomes of rehabilitation therapy. To gain insight into the therapeutic effects of different exercise regimens on reinnervation following traumatic nerve lesion, we evaluated the impact of different clinically transferable exercise protocols (EPs) on metabolic and functional muscle recovery following nerve crush. Methods: The reinnervation of soleus muscle in adult nerve-crushed rats was studied following 6 days of different patterns (continuous or intermittent) and intensities (slow, mid, and fast) of treadmill running EPs. The effects of EPs on muscle fiber multiple innervation, contractile properties, metabolic adaptations, atrophy, and autophagy were assessed using functional and biochemical approaches. Results: Results showed that an intermittent mid-intensity treadmill EP improves soleus muscle reinnervation, whereas a slow continuous running EP worsens the functional outcome. However, the mid-intensity intermittent EP neither enhanced the critical mediators of exercise-induced metabolic adaptations, namely, PGC-1α, nor improved muscle atrophy. Conversely, the autophagy-related marker LC3 increased exclusively in the mid-intensity intermittent EP group. Conclusion: Our results demonstrated that an EP characterized by a mid-intensity intermittent activity enhances the functional muscle recovery upon a nerve crush, thus representing a promising clinically transferable exercise paradigm to improve recovery in humans following peripheral nerve injuries.

8.
Antioxidants (Basel) ; 11(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35052617

ABSTRACT

Myelofibrosis (MF) is the Philadelphia-negative myeloproliferative neoplasm characterized by the worst prognosis and no response to conventional therapy. Driver mutations in JAK2 and CALR impact on JAK-STAT pathway activation but also on the production of reactive oxygen species (ROS). ROS play a pivotal role in inflammation-induced oxidative damage to cellular components including DNA, therefore leading to greater genomic instability and promoting cell transformation. In order to unveil the role of driver mutations in oxidative stress, we assessed ROS levels in CD34+ hematopoietic stem/progenitor cells of MF patients. Our results demonstrated that ROS production in CD34+ cells from CALR-mutated MF patients is far greater compared with patients harboring JAK2 mutation, and this leads to increased oxidative DNA damage. Moreover, CALR-mutant cells show less superoxide dismutase (SOD) antioxidant activity than JAK2-mutated ones. Here, we show that high plasma levels of total antioxidant capacity (TAC) correlate with detrimental clinical features, such as high levels of lactate dehydrogenase (LDH) and circulating CD34+ cells. Moreover, in JAK2-mutated patients, high plasma level of TAC is also associated with a poor overall survival (OS), and multivariate analysis demonstrated that high TAC classification is an independent prognostic factor allowing the identification of patients with inferior OS in both DIPSS lowest and highest categories. Altogether, our data suggest that a different capability to respond to oxidative stress can be one of the mechanisms underlying disease progression of myelofibrosis.

9.
Article in English | MEDLINE | ID: mdl-34770046

ABSTRACT

COVID-19 respiratory failure is a life-threatening condition. Oxygenation targets were evaluated in a non-ICU setting. In this retrospective, observational study, we enrolled all patients admitted to the University Hospital of Genoa, Italy, between 1 February and 31 May 2020 with an RT-PCR positive for SARS-CoV-2. PaO2, PaO2/FiO2 and SatO2% were collected and analyzed at time 0 and in case of admission, patients who required or not C-PAP (groups A and B) were categorized. Each measurement was correlated to adverse outcome. A total of 483 patients were enrolled, and 369 were admitted to hospital. Of these, 153 required C-PAP and 266 had an adverse outcome. Patients with PaO2 <60 and >100 had a higher rate of adverse outcome at time 0, in groups A and B (OR 2.52, 3.45, 2.01, respectively). About the PaO2/FiO2 ratio, the OR for < 300 was 3.10 at time 0, 4.01 in group A and 4.79 in group B. Similar odds were found for < 200 in any groups and < 100 except for group B (OR 11.57). SatO2 < 94% showed OR 1.34, 3.52 and 19.12 at time 0, in groups A and B, respectively. PaO2 < 60 and >100, SatO2 < 94% and PaO2/FiO2 ratio < 300 showed at least two- to three-fold correlation to adverse outcome. This may provide simple but clear targets for clinicians facing COVID-19 respiratory failure in a non ICU-setting.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Cohort Studies , Humans , Oxygen , Retrospective Studies , SARS-CoV-2
10.
Cancers (Basel) ; 13(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638230

ABSTRACT

Long non-coding RNAs (lncRNAs) have been recently described as key mediators in the development of hematological malignancies. In the last years, circulating lncRNAs have been proposed as a new class of non-invasive biomarkers for cancer diagnosis and prognosis and to predict treatment response. The present study is aimed to investigate the potential of circulating lncRNAs as non-invasive prognostic biomarkers in myelofibrosis (MF), the most severe among Philadelphia-negative myeloproliferative neoplasms. We detected increased levels of seven circulating lncRNAs in plasma samples of MF patients (n = 143), compared to healthy controls (n = 65). Among these, high levels of LINC01268, MALAT1 or GAS5 correlate with detrimental clinical variables, such as high count of leukocytes and CD34+ cells, severe grade of bone marrow fibrosis and presence of splenomegaly. Strikingly, high plasma levels of LINC01268 (p = 0.0018), GAS5 (p = 0.0008) or MALAT1 (p = 0.0348) are also associated with a poor overall-survival while high levels of LINC01268 correlate with a shorter leukemia-free-survival. Finally, multivariate analysis demonstrated that the plasma level of LINC01268 is an independent prognostic variable, suggesting that, if confirmed in future in an independent patients' cohort, it could be used for further studies to design an updated classification model for MF patients.

11.
Blood Adv ; 5(5): 1452-1462, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33666652

ABSTRACT

Myelofibrosis (MF) belongs to the family of classic Philadelphia-negative myeloproliferative neoplasms (MPNs). It can be primary myelofibrosis (PMF) or secondary myelofibrosis (SMF) evolving from polycythemia vera (PV) or essential thrombocythemia (ET). Despite the differences, PMF and SMF patients are currently managed in the same way, and prediction of survival is based on the same clinical and genetic features. In the last few years, interest has grown concerning the ability of gene expression profiles (GEPs) to provide valuable prognostic information. Here, we studied the GEPs of granulocytes from 114 patients with MF, using a microarray platform to identify correlations with patient characteristics and outcomes. Cox regression analysis led to the identification of 201 survival-related transcripts characterizing patients who are at high risk for death. High-risk patients identified by this gene signature displayed an inferior overall survival and leukemia-free survival, together with clinical and molecular detrimental features included in contemporary prognostic models, such as the presence of high molecular risk mutations. The high-risk group was enriched in post-PV and post-ET MF and JAK2V617F homozygous patients, whereas pre-PMF was more frequent in the low-risk group. These results demonstrate that GEPs in MF patients correlate with their molecular and clinical features, particularly their survival, and represent the proof of concept that GEPs might provide complementary prognostic information to be applied in clinical decision making.


Subject(s)
Myeloproliferative Disorders , Polycythemia Vera , Primary Myelofibrosis , Thrombocythemia, Essential , Humans , Polycythemia Vera/diagnosis , Polycythemia Vera/genetics , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/diagnosis , Thrombocythemia, Essential/genetics , Transcriptome
12.
NPJ Precis Oncol ; 5(1): 4, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33542466

ABSTRACT

Disease progression of myeloproliferative neoplasms is the result of increased genomic complexity. Since the ability to predict disease evolution is crucial for clinical decisions, we studied single-cell genomics and transcriptomics of CD34-positive cells from a primary myelofibrosis (PMF) patient who progressed to acute myeloid leukemia (AML) while receiving Ruxolitinib. Single-cell genomics allowed the reconstruction of clonal hierarchy and demonstrated that TET2 was the first mutated gene while FLT3 was the last one. Disease evolution was accompanied by increased clonal heterogeneity and mutational rate, but clones carrying TP53 and FLT3 mutations were already present in the chronic phase. Single-cell transcriptomics unraveled repression of interferon signaling suggesting an immunosuppressive effect exerted by Ruxolitinib. Moreover, AML transformation was associated with a differentiative block and immune escape. These results suggest that single-cell analysis can unmask tumor heterogeneity and provide meaningful insights about PMF progression that might guide personalized therapy.

14.
Int J Mol Sci ; 21(19)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036143

ABSTRACT

Single-cell genomics has become the method of choice for the study of heterogeneous cell populations and represents an elective application in defining the architecture and clonal evolution in hematological neoplasms. Reconstructing the clonal evolution of a neoplastic population therefore represents the main way to understand more deeply the pathogenesis of the neoplasm, but it is also a potential tool to understand the evolution of the tumor population with respect to its response to therapy. Pre-analytical phase for single-cell genomics analysis is crucial to obtain a cell population suitable for single-cell sorting, and whole genome amplification is required to obtain the necessary amount of DNA from a single cell in order to proceed with sequencing. Here, we evaluated the impact of different methods of cellular immunostaining, fixation and whole genome amplification on the efficiency and yield of single-cell sequencing.


Subject(s)
Clonal Evolution , Genomics/methods , Hematologic Neoplasms/genetics , Hematopoietic Stem Cells , Nucleic Acid Amplification Techniques/methods , Cell Line , Genome, Human , Humans , K562 Cells , Single-Cell Analysis/methods
15.
Mech Ageing Dev ; 190: 111289, 2020 09.
Article in English | MEDLINE | ID: mdl-32565059

ABSTRACT

Adenosine A2A receptors (A2AR) are crucial in facilitating the BDNF action on synaptic transmission in the rat hippocampus primarily upon ageing. Furthermore, it has been suggested that A2AR-Tropomyosin related kinase B receptor (TrkB) crosstalk has a pivotal role in adenosine A2AR-mediated modulation of the BDNF action on hippocampal plasticity. Considering the impact of the above receptors interplay on what concerns BDNF-induced enhancement of synaptic transmission, gaining a better insight into the mechanisms behind this powerful crosstalk becomes of primary interest. Using in situ proximity ligation assay (PLA), the existence of a direct physical interaction between adenosine A2AR and TrkB is demonstrated. The A2AR-TrkB heteroreceptor complexes show a heterogeneous distribution within the rat dorsal hippocampus. High densities of the heteroreceptor complexes were observed in the pyramidal cell layers of CA1-CA3 regions and in the polymorphic layer of the dentate gyrus (DG). The stratum radiatum of the CA1-3 regions showed positive PLA signal in contrast to the oriens region. The molecular and granular layers of the DG also lacked significant densities of PLA positive heteroreceptor complexes, but subgranular zone showed some PLA positive cells. Their allosteric receptor-receptor interactions may significantly modulate BDNF signaling impacting on hippocampal plasticity which is impaired upon ageing.


Subject(s)
Aging/physiology , Hippocampus , Neuronal Plasticity/physiology , Receptor, Adenosine A2A/metabolism , Receptor, trkB/metabolism , Synaptic Transmission/physiology , Animals , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/metabolism , Cell Membrane/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Multiprotein Complexes , Rats , Receptors, Cell Surface/metabolism , Signal Transduction
16.
Nutrients ; 11(9)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31461895

ABSTRACT

Creatine plays a crucial role in developing the brain, so much that its genetic deficiency results in mental dysfunction and cognitive impairments. Moreover, creatine supplementation is currently under investigation as a preventive measure to protect the fetus against oxidative stress during difficult pregnancies. Although creatine use is considered safe, posing minimal risk to clinical health, we found an alteration in morpho-functional maturation of neurons when male rats were exposed to creatine loads during brain development. In particular, increased excitability and enhanced long-term potentiation (LTP) were observed in the hippocampal pyramidal neurons of weaning pups. Since these effects were observed a long time after creatine treatment had been terminated, long-lasting modifications persisting into adulthood were hypothesized. Such modifications were investigated in the present study using morphological, electrophysiological, and calcium imaging techniques applied to hippocampal Cornu Ammonis 1 (CA1) neurons of adult rats born from dams supplemented with creatine. When compared to age-matched controls, the treated adult offspring were found to retain enhanced neuron excitability and an improved LTP, the best-documented neuronal substrate for memory formation. While translating data from rats to humans does have limitations, our findings suggest that prenatal creatine supplementation could have positive effects on adult cognitive abilities.


Subject(s)
CA1 Region, Hippocampal/drug effects , Creatine/administration & dosage , Dietary Supplements , Neuronal Plasticity/drug effects , Prenatal Exposure Delayed Effects , Pyramidal Cells/drug effects , Age Factors , Animal Nutritional Physiological Phenomena , Animals , Behavior, Animal/drug effects , CA1 Region, Hippocampal/growth & development , CA1 Region, Hippocampal/metabolism , Calcium Signaling/drug effects , Cognition/drug effects , Female , Male , Maternal Nutritional Physiological Phenomena , Memory/drug effects , Pregnancy , Pyramidal Cells/metabolism , Rats, Sprague-Dawley , Time Factors
17.
Arch Biochem Biophys ; 663: 22-33, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30578752

ABSTRACT

In fast-twitch fibers from adult mice Ca2+ release units (CRUs, i.e. intracellular junctions of excitation-contraction coupling), and mitochondria are structurally linked to each other by small strands, named tethers. We recently showed that aging causes separation of a fraction of mitochondria from CRUs and a consequent impairment of the Ca2+ signaling between the two organelles. However, whether the uncoupling of mitochondria from CRUs is the result of aging per-se or the consequence of reduced muscle activity remains still unclear. Here we studied the association between mitochondria and CRUs: in a) extensor digitorum longus (EDL) muscles from 2 years old mice, either sedentary or trained for 1 year in wheel cages; and b) denervated EDL muscles from adult mice and rats. We analyzed muscle samples using a combination of structural (confocal and electron microscopy), biochemical (assessment of oxidative stress via western blot), and functional (ex-vivo contractile properties, and mitochondrial Ca2+ uptake) experimental procedures. The results collected in structural studies indicate that: a) ageing and denervation result in partial uncoupling between mitochondria and CRUs; b) exercise either maintains (in old mice) or restores (in transiently denervated rats) the association between the two organelles. Functional studies supported the hypothesis that CRU-mitochondria coupling is important for mitochondrial Ca2+ uptake, optimal force generation, and muscle performance. Taken together our results indicate that muscle activity maintains/improves proper association between CRUs and mitochondria.


Subject(s)
Aging/physiology , Calcium/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/physiology , Sedentary Behavior , Aging/metabolism , Animals , Mice , Mice, Inbred C57BL , Oxidative Stress , Rats , Rats, Sprague-Dawley
18.
Crit Care Med ; 46(9): e889-e896, 2018 09.
Article in English | MEDLINE | ID: mdl-29957708

ABSTRACT

OBJECTIVES: To assess the relationship between microcirculatory perfusion and multiple organ dysfunction syndrome in patients following traumatic hemorrhagic shock. DESIGN: Multicenter prospective longitudinal observational study. SETTING: Three U.K. major trauma centers. PATIENTS: Fifty-eight intubated and ventilated patients with traumatic hemorrhagic shock. INTERVENTIONS: Sublingual incident dark field microscopy was performed within 12 hours of ICU admission (D0) and repeated 24 and 48 hours later. Cardiac output was assessed using oesophageal Doppler. Multiple organ dysfunction syndrome was defined as Serial Organ Failure Assessment score greater than or equal to 6 at day 7 post injury. MEASUREMENTS AND MAIN RESULTS: Data from 58 patients were analyzed. Patients had a mean age of 43 ± 19 years, Injury Severity Score of 29 ± 14, and initial lactate of 7.3 ± 6.1 mmol/L and received 6 U (interquartile range, 4-11 U) of packed RBCs during initial resuscitation. Compared with patients without multiple organ dysfunction syndrome at day 7, patients with multiple organ dysfunction syndrome had lower D0 perfused vessel density (11.2 ± 1.8 and 8.6 ± 1.8 mm/mm; p < 0.01) and microcirculatory flow index (2.8 [2.6-2.9] and 2.6 [2.2-2.8]; p < 0.01) but similar cardiac index (2.5 [± 0.6] and 2.1 [± 0.7] L/min//m; p = 0.11). Perfused vessel density demonstrated the best discrimination for predicting subsequent multiple organ dysfunction syndrome (area under curve 0.87 [0.76-0.99]) compared with highest recorded lactate (area under curve 0.69 [0.53-0.84]), cardiac index (area under curve 0.66 [0.49-0.83]) and lowest recorded systolic blood pressure (area under curve 0.54 [0.39-0.70]). CONCLUSIONS: Microcirculatory hypoperfusion immediately following traumatic hemorrhagic shock and resuscitation is associated with increased multiple organ dysfunction syndrome. Microcirculatory variables are better prognostic indicators for the development of multiple organ dysfunction syndrome than more traditional indices. Microcirculatory perfusion is a potential endpoint of resuscitation following traumatic hemorrhagic shock.


Subject(s)
Multiple Organ Failure/etiology , Shock, Hemorrhagic/complications , Adult , Aged , Female , Humans , Longitudinal Studies , Male , Microcirculation , Middle Aged , Multiple Organ Failure/physiopathology , Prospective Studies , Regional Blood Flow , Shock, Hemorrhagic/etiology , Shock, Hemorrhagic/physiopathology , Wounds and Injuries/complications
20.
Eur J Emerg Med ; 24(6): e21-e26, 2017 Dec.
Article in English | MEDLINE | ID: mdl-26891086

ABSTRACT

OBJECTIVE: Acute mesenteric ischemia (AMI) is a life-threatening condition requiring time-dependent treatment; thus, early recognition may improve outcomes. We hypothesized that clinician-performed mesenteric vessels duplex ultrasound (DUS) could facilitate early identification of patients with AMI in high-risk patients presenting with abdominal pain. METHODS: This was a single-operator, observational, prospective cohort study. Patients aged at least 65 presenting to Emergency Departments with acute abdominal pain and no clear diagnosis after an initial work-up were enrolled. All patients underwent multidetector computed tomography and these findings provided the reference standard in this study. DUS of the celiac artery and superior mesenteric artery (SMA) were obtained to measure the peak systolic velocity (PSV) and were performed within 24 h of admission. PSVs outside the normal range were considered to indicate AMI. RESULTS: Of 49 patients identified, 47 were consented to enrollment and diagnostic images were obtained in 45 (96%). Fifteen patients (33%) had AMI (six occlusive, nine nonocclusive disease). Among these, 12 (80%) had abnormal DUS velocities. SMA PSV showed a sensitivity of 78.57% [95% confidence interval (CI): 49.2-95.34], a specificity of 64.52% (95% CI: 45.37-80.77), a positive predictive value of 50% (95% CI: 28.22-71.78), and a negative predictive value of 86.96% (95% CI: 66.41-97.22) for AMI. DUS had a sensitivity of 100%, a specificity of 64%, and a negative predictive value of 100% for occlusive AMI. Assessment of celiac artery PSV did not improve diagnostic performance. CONCLUSION: In this single-operator pilot study, mesenteric vessel DUS was performed successfully in the Emergency Department, with a high proportion of diagnostic images obtained. A normal SMA PSV was associated with a low risk of occlusive AMI.


Subject(s)
Emergency Service, Hospital , Mesenteric Artery, Superior/diagnostic imaging , Mesenteric Ischemia/diagnostic imaging , Multidetector Computed Tomography/methods , Ultrasonography, Doppler, Duplex/methods , Acute Disease , Adult , Aged , Celiac Artery/diagnostic imaging , Cohort Studies , Computed Tomography Angiography/methods , Early Diagnosis , Female , Humans , Italy , Longitudinal Studies , Male , Mesenteric Ischemia/physiopathology , Middle Aged , Pilot Projects , Predictive Value of Tests , Prospective Studies , ROC Curve , Sensitivity and Specificity , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...