Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 168435, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38030005

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic contaminants in urban soils. The accumulation and source identifications of PAHs within a city have been frequently studied. However, impacts of urbanization development modes on PAHs accumulation patterns by taking a city as a whole have been seldom reported. Four cities with two development modes in Hebei province, Chengde and Zhangjiakou (tourist cities) and Handan and Tangshan (industrial cities), were selected. The concentrations of 16 priority PAHs in soils in the study areas were investigated. The results showed that the average concentrations of Σ16PAHs in Handan (2517 µg/kg) and Tangshan (2256 µg/kg) were more than twice of those in Chengde (696 µg/kg) and Zhangjiakou (926 µg/kg) approximately. Lines of evidence, provided by a combination of diagnostic ratios, pairwise correlation, and PMF methods, revealed that the dominant sources of PAHs in either city were industrial emission, vehicle emission, and petrogenic/biogenic process but with different proportions. Linear fittings based on Bayesian kernel machine regression analysis (BKMR) were constructed to illustrate the impact of industrialization on PAHs accumulation. The probability of excessing the 10 % (376 µg/kg) and 50 % (1138 µg/kg) of current ∑16PAHs would be higher than 90 % given the gross industrial production per unit area >5.00 × 106 and 20.5 × 106 CNY/km2, respectively. The proposed threshold values of industrialization are of significance for determining industrial structure and proportion in urban management.

2.
Environ Pollut ; 307: 119461, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35577264

ABSTRACT

With the wide utilization of organophosphate esters (OPEs) in recent years, OPEs have been detected more frequently in the aquatic environment. However, the distribution of OPEs in drinking source water has rarely been investigated across a large region. In this study, the occurrence and distribution of 13 OPEs were investigated in 23 source water sites from Northeast to Southeast (spacing greater than 3320 km) with a direct injection ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Total OPEs ranged from 218.8 to 636.6 ng/L, with a mean of 380.8 ng/L. The average detected concentration of OPEs in southern cities was higher than that in northern cities. Chlorinated OPEs accounted for 64.74% of the total concentration. Triethyl phosphate (TEP), tri (2-chloroethyl) phosphate (TCEP), and tri (chloropropyl) phosphate (TCPP) were detected in all water samples. Rainfall is a significant factor that affects the OPE concentration (less rainfall, higher concentration). China's OPE concentrations have rapidly reached a median level when compared to those of other countries. Ecological risk assessment showed that most OPEs have no or low risk to organisms (fish, crustacea, algae), except tricresyl phosphate (TCP), which is medium risk. The risk of OPEs in less-rain regions needs to be of greater concern, especially TCP.


Subject(s)
Drinking Water , Flame Retardants , Animals , China , Chromatography, Liquid , Drinking Water/analysis , Environmental Monitoring/methods , Esters/analysis , Flame Retardants/analysis , Organophosphates/analysis , Phosphates/analysis , Risk Assessment , Tandem Mass Spectrometry
3.
Environ Int ; 135: 105347, 2020 02.
Article in English | MEDLINE | ID: mdl-31794940

ABSTRACT

This study investigated perfluoroalkyl acids (PFAAs) in edible parts of vegetables, soils, and irrigation water in greenhouse and open filed, for the first time, in Shouguang city, the largest vegetable production base in China, which is located nearby a fluorochemical industrial park (FIP). The bioaccumulation factors (BAFs) were calculated, and the human exposures of PFAAs via consumption of the vegetables for different age groups assuming the maximum levels detected in each vegetable and average consumption rates were also estimated. The ΣPFAA levels ranged from 1.67 to 33.5 ng/g dry weight (dw) in the edible parts of all the vegetables, with perfluorobutanoic acid (PFBA) being the dominant compound with an average contribution of 49% to the ΣPFAA level. The leafy vegetables showed higher ΣPFAA levels (average 8.76 ng/g dw) than the fruit and root vegetables. For all the vegetables, the log10 BAF values of perfluorinated carboxylic acids showed a decreasing trend with increasing chain length, with PFBA having the highest log10 BAF values (average 0.98). Cabbage had higher bioaccumulation of PFBA (log10 BAF 1.24) than other vegetables. For the greenhouse soils and vegetables, the average contribution of perfluorooctanoic acid (PFOA) to ΣPFAA was lower than that in the open field samples, while the contributions of PFBA, PFHxA, PFPeA to ΣPFAA were higher. Irrigation water may be an important source of PFAAs in greenhouse, while for open field vegetables and soils, atmospheric deposition may be an additional contamination pathway. The estimated maximum exposure to PFOA through vegetable consumption for urban preschool children (aged 2-5 years) was 63% of the reference dose set by the European Food Safety Authority. Suggestions are also provided for mitigating the health risks of human exposure to PFAAs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Vegetables , Water Pollutants, Chemical , Bioaccumulation , Carboxylic Acids , Child, Preschool , China , Diet , Environmental Exposure , Environmental Monitoring , Fluorocarbons/pharmacokinetics , Humans , Soil , Vegetables/chemistry
4.
Environ Pollut ; 240: 653-660, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29775942

ABSTRACT

Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment.


Subject(s)
Basal Metabolism/drug effects , Halogenated Diphenyl Ethers/toxicity , Oligochaeta/metabolism , Osmotic Pressure/drug effects , Soil Pollutants/toxicity , Animals , Biomarkers/metabolism , Gene Expression , Metabolomics/methods , Soil/chemistry , Soil Pollutants/analysis
5.
Sci Total Environ ; 590-591: 633-642, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28284648

ABSTRACT

In this study, the risks to aquatic organisms posed by 12 commonly detected pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) that are extensively used in Bohai coastal region of China were examined. These were linear alkylbenzene sulfonate (LAS), nonylphenol (NP), diethylhexyl phthalate (DEHP), norfloxacin (NOR), sulfamethoxazole (SMX), erythromycin (ERY), bisphenol A (BPA), ofloxacin (OFL), carbamazepine (CBZ), naproxen (NPX), atenolol (ATL) and metoprolol (MET). Their relative risk was ranked based on the proximity between the medians of the reported effect concentrations and measured river or lake water concentrations. The surfactants (LAS) and endocrine disrupting chemicals NP (a breakdown product of the surfactant nonylphenol polyethoxylate) and DEHP (a plasticizer) were identified as posing the greatest risk from this range of chemicals. LAS had a hundred-fold higher risk than any of the pharmaceuticals. The highest risk ranked pharmaceuticals were all antibiotics. Zinc (Zn) and mercury (Hg) were added to the comparison as representative heavy metals. Zn posed a risk higher than all the organics. The risk posed by Hg was less than the surfactants but greater than the selected pharmaceuticals. Whereas LAS and DEHP could cause harmful effects to all the wildlife groups, NP and BPA posed the greatest risk to fish. Antibiotics showed the highest risk to algae. Spatial and temporal distributions of PPCPs and EDCs were conducted for risk identification, source analysis and seasonal change exploration. Municipal sewage effluent linked to urban areas was considered to be the major source of pharmaceuticals. With regard to seasonal influence the risk posed by LAS to the aquatic organisms was significantly affected by wet and dry seasonal change. The dilution effects were the common feature of LAS and ERY risks. The difference in LAS and ERY risk patterns along the rivers was mainly affected by the elimination process.

6.
Chemosphere ; 168: 1613-1618, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27938985

ABSTRACT

In recent years, Perfluorooctane sulfonate (PFOS) was widely detected in Yellow-Bohai Sea and other areas, causing a series of adverse effects in aquatic organisms. However, present studies of its chronic and acute toxicity on aquatic organisms were far more inadequate. Therefore, in the present study, Daphnia magna was used to investigate PFOS toxicity on their immobilization, heartbeat, reproductive and biochemical performance in acute, subchronic and chronic exposure. The results showed that the 48h-EC50 value for immobilization was 79.35 mg L-1 and the toxicity was classified as intermediate. Heartbeat was significantly stimulated and reproductive parameters were significantly suppressed by PFOS, which can be used to reflect the toxicological effects on individuals. On the other hand, intrinsic rate of natural increase was more sensitive than reproductive parameters, which indicated negative responses on population dynamics of Daphnia magna. In addition, there were different degrees of inhibition on GST, CAT and ChE activity, which indicated three types of enzyme could become biomarkers to chronic PFOS exposure. Most of selected and evaluated endpoints have significant sensitivity to PFOS at the concentration of 8 mg L-1 during subchronic and chronic exposure.


Subject(s)
Alkanesulfonic Acids/toxicity , Daphnia/drug effects , Fluorocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Daphnia/physiology , Heart/drug effects , Heart/physiology , Male , Reproduction/drug effects
7.
Environ Int ; 91: 69-77, 2016 May.
Article in English | MEDLINE | ID: mdl-26909815

ABSTRACT

Perfluoroalkyl acids (PFAAs) can be released to water bodies during manufacturing and application of PFAA-containing products. In this study, the contamination pattern, attenuation dynamics, sources, pathways, and risk zoning of PFAAs in surface and ground water was examined within a 10km radius from a mega-fluorochemical industrial park (FIP). Among 12 detected PFAAs, perfluorooctanoic acid (PFOA) dominated, followed by shorter-chained perfluoroalkyl carboxylic acids (PFCAs). PFAA-containing waste was discharged from the FIP, with levels reaching 1.86mg/L in the nearby rivers flowing to the Bohai sea together with up to 273µg/L in the local groundwater in the catchment. These levels constitute a human health risks for PFOA and other shorter-chained PFCAs within this location. The concentrations of ∑PFAAs in surface water strongly correlated with the local groundwater. The dominant pollution pathways of PFAAs included (i) discharge into surface water then to groundwater through seepage, and (ii) atmospheric deposition from the FIP, followed by infiltration to groundwater. As the distance increased from the source, PFAAs levels in groundwater showed a sharp initial decrease followed by a gentle decline. The contamination signal from the FIP site on PFAAs in groundwater existed within a radius of 4km, and at least 3km from the polluted Dongzhulong River. The major controlling factor in PFAA attenuation processes was likely to be dilution together with dispersion and adsorption to aquifer solids. The relative abundance of PFOA (C8) declined while those of shorter-chained PFCAs (C4-C6) increased during surface water seepage and further dispersion in groundwater.


Subject(s)
Carboxylic Acids/analysis , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Chemical Industry , China , Environmental Monitoring , Groundwater/analysis , Humans , Risk Assessment , Rivers/chemistry , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...