Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Periodontol Implant Dent ; 15(2): 74-79, 2023.
Article in English | MEDLINE | ID: mdl-38357337

ABSTRACT

Background: The role of bacteria in the initiation and progression of periodontitis has led to a great interest in using antibiotics to suppress pathogenic microbiota. Considering the drawbacks of systemic antibiotics' application, local delivery systems directly in the periodontal pocket can be helpful. Therefore, the effect of an efficient tetracycline-loaded delivery system was investigated on the clinical parameters of periodontitis. Methods: In this clinical trial with a split-mouth design, 10 patients with periodontitis with pocket depths≥5 mm were included. After scaling and root planing (SRP) for all the patients, one side of the mouth was randomly considered as the control group, and on the other side, chitosan/polycaprolactone (PCL) nanofibrous films containing tetracycline (5%) were placed in pockets of 5 mm and deeper. Clinical measurements of pocket probing depth (PPD), clinical attachment loss (CAL), and bleeding on probing (BOP) indices were made at the beginning and after 8 weeks of intervention. PPD, CAL, and BOP parameters were compared between the control and test groups before and after the intervention with paired t tests using SPSS 24. The significance level of the tests was considered at P<0.05. Results: The mean PPD, CAL, and BOP in both the control (SRP) and test (LDDs) groups decreased after 8 weeks. A significant difference was detected in reducing PPD, BOP, and CAL after 8 weeks in 5-mm pockets, and the mean values were higher in the test group than in the control (P<0.05). Conclusion: The local drug delivery system using chitosan/PCL nanofibrous films containing tetracycline can effectively control periodontal diseases by reducing pocket depth and inflammation and improving CAL without offering side effects, although further evaluations are needed.

2.
Adv Pharm Bull ; 12(2): 356-365, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35620328

ABSTRACT

Purpose: Stem cells can exhibit restorative effects with the commitment to functional cells.Cell-imprinted topographies provide adaptable templates and certain dimensions for thedifferentiation and bioactivity of stem cells. Cell sheet technology using the thermo-responsivepolymers detaches the "cell sheets" easier with less destructive effects on the extracellularmatrix (ECM). Here, we aim to dictate keratinocyte-like differentiation of mesenchymal stemcells (MSCs) by using combined cell imprinting and sheet technology. Methods: We developed the poly dimethyl siloxane (PDMS) substrate having keratinocytecell-imprinted topography grafted with the PNIPAAm polymer. Adipose tissue-derived MSCs(AT-MSCs) were cultured on PDMS substrate for 14 days and keratinocyte-like differentiationmonitored via the expression of involucrin, P63, and cytokeratin 14. Results: Data showed the efficiency of the current protocol in the fabrication of PDMSmolds. The culture of AT-MSCs induced typical keratinocyte morphology and up-regulatedthe expression of cytokeratin-14, Involucrin, and P63 compared to AT-MSCs cultured on theplastic surface (P < 0.05). Besides, KLC sheets were generated once slight changes occur in theenvironment temperature. Conclusion: These data showed the hypothesis that keratinocyte cell imprinted substrate canorient AT-MSCs toward KLCs by providing a specific niche and topography.

SELECTION OF CITATIONS
SEARCH DETAIL
...