Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Inflammation ; 47(1): 346-362, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37831367

ABSTRACT

Infectious diseases are a significant burden in global healthcare. Pathogens engage with different host defense mechanisms. However, it is currently unknown if there are disease-specific immune signatures and/or if different pathogens elicit common immune-associated molecular entities to common therapeutic interventions. We studied patients enrolled through the Human Immunology Project Consortium (HIPC), which focuses on immune responses to various infections. Blood samples were collected and analyzed from patients during infection and follow-up time points at the convalescent stage. The study included samples from patients with Lyme disease (LD), tuberculosis (TB), malaria (MLA), dengue virus (DENV), and West Nile virus (WNV), as well as kidney transplant patients with cytomegalovirus (CMV) and polyomavirus (BKV) infections. Using an antibody-based assay, we quantified ~ 350 cell surface markers, cytokines, and chemokines involved in inflammation and immunity. Unique protein signatures were identified specific to the acute phase of infection irrespective of the pathogen type, with significant changes during convalescence. In addition, tumor necrosis factor receptor superfamily member 6 (TNR6), C-C Motif Chemokine Receptor 7 (CCR7), and C-C motif chemokine ligand-1 (CCL1) were increased in the acute and convalescent phases across all viral, bacterial, and protozoan compared to blood from healthy donors. Furthermore, despite the differences between pathogens, proteins were enriched in common biological pathways such as cell surface receptor signaling pathway and response to external stimulus. In conclusion, we demonstrated that irrespective of the pathogen type, there are common immunoregulatory and proinflammatory signals.


Subject(s)
Proteome , West Nile virus , Humans , Inflammation , Cytokines , Signal Transduction/physiology
3.
Nat Commun ; 14(1): 4359, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468466

ABSTRACT

Rejection remains the main cause of premature graft loss after kidney transplantation, despite the use of potent immunosuppression. This highlights the need to better understand the composition and the cell-to-cell interactions of the alloreactive inflammatory infiltrate. Here, we performed droplet-based single-cell RNA sequencing of 35,152 transcriptomes from 16 kidney transplant biopsies with varying phenotypes and severities of rejection and without rejection, and identified cell-type specific gene expression signatures for deconvolution of bulk tissue. A specific association was identified between recipient-derived FCGR3A+ monocytes, FCGR3A+ NK cells and the severity of intragraft inflammation. Activated FCGR3A+ monocytes overexpressed CD47 and LILR genes and increased paracrine signaling pathways promoting T cell infiltration. FCGR3A+ NK cells overexpressed FCRL3, suggesting that antibody-dependent cytotoxicity is a central mechanism of NK-cell mediated graft injury. Multiplexed immunofluorescence using 38 markers on 18 independent biopsy slides confirmed this role of FcγRIII+ NK and FcγRIII+ nonclassical monocytes in antibody-mediated rejection, with specificity to the glomerular area. These results highlight the central involvement of innate immune cells in the pathogenesis of allograft rejection and identify several potential therapeutic targets that might improve allograft longevity.


Subject(s)
Graft Rejection , Kidney , Kidney/pathology , Transplantation, Homologous , Antibodies , Allografts , Immunity, Innate/genetics
4.
Ann Transl Med ; 11(9): 315, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37404982

ABSTRACT

Background: Focal segmental glomerulosclerosis (FSGS) is frequently associated with heavy proteinuria and progressive renal failure requiring dialysis or kidney transplantation. However, primary FSGS also has a ~40% risk of recurrence of disease in the transplanted kidney (rFSGS). Multiple circulating factors have been identified to contribute to the pathogenesis of primary and rFSGS including soluble urokinase-type plasminogen activator receptor (suPAR) and patient-derived CD40 autoantibody (CD40autoAb). However, the downstream effector pathways specific to individual factors require further study. The tumor necrosis factor, TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS has been supported by multiple studies. Methods: A human in vitro model was used to study podocyte injury measured as the loss of actin stress fibers. Anti-CD40 autoantibody was isolated from FSGS patients (recurrent and non-recurrent) and control patients with ESRD due to non-FSGS related causes. Two novel human antibodies-anti-uPAR (2G10) and anti-CD40 antibody (Bristol Meyer Squibb, 986090) were tested for their ability to rescue podocyte injury. Podocytes treated with patient derived antibody were transcriptionally profiled using whole human genome microarray. Results: Here we show that podocyte injury caused by sera from FSGS patients is mediated by CD40 and suPAR and can be blocked by human anti-uPAR and anti-CD40 antibodies. Transcriptomic studies to compare the molecules and pathways activated in response to CD40 autoantibody from rFSGS patients (rFSGS/CD40autoAb) and suPAR, identified unique inflammatory pathways associated with FSGS injury. Conclusions: We identified several novel and previously described genes associated with FSGS progression. Targeted blockade of suPAR and CD40 pathways with novel human antibodies showed inhibition of podocyte injury in FSGS.

5.
PLoS One ; 18(5): e0285870, 2023.
Article in English | MEDLINE | ID: mdl-37205661

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) infection, either de novo or as reactivation after allotransplantation and chronic immunosuppression, is recognized to cause detrimental alloimmune effects, inclusive of higher susceptibility to graft rejection and substantive impact on chronic graft injury and reduced transplant survival. To obtain further insights into the evolution and pathogenesis of CMV infection in an immunocompromised host we evaluated changes in the circulating host proteome serially, before and after transplantation, and during and after CMV DNA replication (DNAemia), as measured by quantitative polymerase chain reaction (QPCR). METHODS: LC-MS-based proteomics was conducted on 168 serially banked plasma samples, from 62 propensity score-matched kidney transplant recipients. Patients were stratified by CMV replication status into 31 with CMV DNAemia and 31 without CMV DNAemia. Patients had blood samples drawn at protocol times of 3- and 12-months post-transplant. Additionally, blood samples were also drawn before and 1 week and 1 month after detection of CMV DNAemia. Plasma proteins were analyzed using an LCMS 8060 triple quadrupole mass spectrometer. Further, public transcriptomic data on time matched PBMCs samples from the same patients was utilized to evaluate integrative pathways. Data analysis was conducted using R and Limma. RESULTS: Samples were segregated based on their proteomic profiles with respect to their CMV Dnaemia status. A subset of 17 plasma proteins was observed to predict the onset of CMV at 3 months post-transplant enriching platelet degranulation (FDR, 4.83E-06), acute inflammatory response (FDR, 0.0018), blood coagulation (FDR, 0.0018) pathways. An increase in many immune complex proteins were observed at CMV infection. Prior to DNAemia the plasma proteome showed changes in the anti-inflammatory adipokine vaspin (SERPINA12), copper binding protein ceruloplasmin (CP), complement activation (FDR = 0.03), and proteins enriched in the humoral (FDR = 0.01) and innate immune responses (FDR = 0.01). CONCLUSION: Plasma proteomic and transcriptional perturbations impacting humoral and innate immune pathways are observed during CMV infection and provide biomarkers for CMV disease prediction and resolution. Further studies to understand the clinical impact of these pathways can help in the formulation of different types and duration of anti-viral therapies for the management of CMV infection in the immunocompromised host.


Subject(s)
Cytomegalovirus Infections , Kidney Transplantation , Serpins , Humans , Kidney Transplantation/adverse effects , Cytomegalovirus/genetics , Proteome , Proteomics , DNA, Viral/genetics
6.
Front Immunol ; 13: 1012042, 2022.
Article in English | MEDLINE | ID: mdl-36466928

ABSTRACT

In this cross-sectional and longitudinal analysis of mapping the T-cell repertoire in kidney transplant recipients, we have investigated and validated T-cell clonality, immune repertoire chronology at rejection, and contemporaneous allograft biopsy quantitative tissue injury, to better understand the pathobiology of acute T-cell fraction, T-cell repertoire and antibody-mediated kidney transplant rejection. To follow the dynamic evolution of T-cell repertoire changes before and after engraftment and during biopsy-confirmed acute rejection, we sequenced 323 peripheral blood samples from 200 unique kidney transplant recipients, with (n=100) and without (n=100) biopsy-confirmed acute rejection. We report that patients who develop acute allograft rejection, have lower (p=0.01) T-cell fraction even before transplantation, followed by its rise after transplantation and at the time of acute rejection accompanied by high TCR repertoire turnover (p=0.004). Acute rejection episodes occurring after the first 6 months post-transplantation, and those with a component of antibody-mediated rejection, had the highest turnover; p=0.0016) of their T-cell repertoire. In conclusion, we validated that detecting repertoire changes in kidney transplantation correlates with post-transplant rejection episodes suggesting that T-cell receptor sequencing may provide recipient pre-transplant and post-transplant predictors of rejection risk.


Subject(s)
Kidney Transplantation , T-Lymphocytes , Humans , Kidney Transplantation/adverse effects , Cross-Sectional Studies , Postoperative Complications , Biopsy , Antibodies
7.
Front Immunol ; 13: 1012824, 2022.
Article in English | MEDLINE | ID: mdl-36569838

ABSTRACT

Advancement in proteomics methods for interrogating biological samples has helped identify disease biomarkers for early diagnostics and unravel underlying molecular mechanisms of disease. Herein, we examined the serum proteomes of 23 study participants presenting with one of two common arthropod-borne infections: Lyme disease (LD), an extracellular bacterial infection or West Nile virus infection (WNV), an intracellular viral infection. The LC/MS based serum proteomes of samples collected at the time of diagnosis and during convalescence were assessed using a depletion-based high-throughput shotgun proteomics (dHSP) pipeline as well as a non-depleting blotting-based low-throughput platform (MStern). The LC/MS integrated analyses identified host proteome responses in the acute and recovery phases shared by LD and WNV infections, as well as differentially abundant proteins that were unique to each infection. Notably, we also detected proteins that distinguished localized from disseminated LD and asymptomatic from symptomatic WNV infection. The proteins detected in both diseases with the dHSP pipeline identified unique and overlapping proteins detected with the non-depleting MStern platform, supporting the utility of both detection methods. Machine learning confirmed the use of the serum proteome to distinguish the infection from healthy control sera but could not develop discriminatory models between LD and WNV at current sample numbers. Our study is the first to compare the serum proteomes in two arthropod-borne infections and highlights the similarities in host responses even though the pathogens and the vectors themselves are different.


Subject(s)
Lyme Disease , West Nile Fever , West Nile virus , Humans , West Nile Fever/diagnosis , West Nile virus/physiology , Proteome , Proteomics , Lyme Disease/diagnosis
8.
Nat Immunol ; 23(12): 1777-1787, 2022 12.
Article in English | MEDLINE | ID: mdl-36316476

ABSTRACT

Several studies have shown that the pre-vaccination immune state is associated with the antibody response to vaccination. However, the generalizability and mechanisms that underlie this association remain poorly defined. Here, we sought to identify a common pre-vaccination signature and mechanisms that could predict the immune response across 13 different vaccines. Analysis of blood transcriptional profiles across studies revealed three distinct pre-vaccination endotypes, characterized by the differential expression of genes associated with a pro-inflammatory response, cell proliferation, and metabolism alterations. Importantly, individuals whose pre-vaccination endotype was enriched in pro-inflammatory response genes known to be downstream of nuclear factor-kappa B showed significantly higher serum antibody responses 1 month after vaccination. This pro-inflammatory pre-vaccination endotype showed gene expression characteristic of the innate activation state triggered by Toll-like receptor ligands or adjuvants. These results demonstrate that wide variations in the transcriptional state of the immune system in humans can be a key determinant of responsiveness to vaccination.


Subject(s)
Antibody Formation , Vaccines , Humans , Vaccination , Adjuvants, Immunologic , Immunity, Innate
9.
Sci Adv ; 8(23): eabn4965, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35675394

ABSTRACT

Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.


Subject(s)
Kidney Diseases , Kidney , Humans , Kidney/pathology , Kidney Diseases/metabolism , Metabolomics/methods , Proteomics/methods , Transcriptome
10.
J Clin Med ; 11(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35207183

ABSTRACT

Sub-optimal sensitivity and specificity in current allograft monitoring methodologies underscore the need for more accurate and reflexive immunosurveillance to uncover the flux in alloimmunity between allograft health and the onset and progression of rejection. QSant-a urine based multi-analyte diagnostic test-was developed to profile renal transplant health and prognosticate injury, risk of evolution, and resolution of acute rejection. Q-Score-the composite score, across measurements of DNA, protein and metabolic biomarkers in the QSant assay-enables this risk prognostication. The domain of immune quiescence-below a Q-Score threshold of 32-is well established, based on published AUC of 98% for QSant. However, the trajectory of rejection is variable, given that causality is multi-factorial. Injury and subtypes of rejection are captured by the progression of Q-Score. This publication explores the clinical utility of QSant across the alloimmunity gradient of 32-100 for the early diagnosis of allograft injury and rejection.

11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35181606

ABSTRACT

Cytomegalovirus (CMV) infection is associated with graft rejection in renal transplantation. Memory-like natural killer (NK) cells expressing NKG2C and lacking FcεRIγ are established during CMV infection. Additionally, CD8+ T cells expressing NKG2C have been observed in some CMV-seropositive patients. However, in vivo kinetics detailing the development and differentiation of these lymphocyte subsets during CMV infection remain limited. Here, we interrogated the in vivo kinetics of lymphocytes in CMV-infected renal transplant patients using longitudinal samples compared with those of nonviremic (NV) patients. Recipient CMV-seropositive (R+) patients had preexisting memory-like NK cells (NKG2C+CD57+FcεRIγ-) at baseline, which decreased in the periphery immediately after transplantation in both viremic and NV patients. We identified a subset of prememory-like NK cells (NKG2C+CD57+FcεRIγlow-dim) that increased during viremia in R+ viremic patients. These cells showed a higher cytotoxic profile than preexisting memory-like NK cells with transient up-regulation of FcεRIγ and Ki67 expression at the acute phase, with the subsequent accumulation of new memory-like NK cells at later phases of viremia. Furthermore, cytotoxic NKG2C+CD8+ T cells and γδ T cells significantly increased in viremic patients but not in NV patients. These three different cytotoxic cells combinatorially responded to viremia, showing a relatively early response in R+ viremic patients compared with recipient CMV-seronegative viremic patients. All viremic patients, except one, overcame viremia and did not experience graft rejection. These data provide insights into the in vivo dynamics and interplay of cytotoxic lymphocytes responding to CMV viremia, which are potentially linked with control of CMV viremia to prevent graft rejection.


Subject(s)
Cytomegalovirus Infections/immunology , Flow Cytometry/methods , Killer Cells, Natural/metabolism , Adult , CD8-Positive T-Lymphocytes/metabolism , Cell Separation/methods , Cytomegalovirus/metabolism , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/virology , Female , Graft Rejection/immunology , Humans , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Killer Cells, Natural/immunology , Kinetics , Lymphocyte Activation/immunology , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Single-Cell Analysis/methods , Viremia/immunology , Viremia/virology
12.
Transplantation ; 106(7): 1330-1338, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34982754

ABSTRACT

The current standard of serum creatinine and biopsy to monitor allograft health has many limitations. The most significant drawback of the current standard is the lack of sensitivity and specificity to allograft injuries, which are diagnosed only after significant damage to the allograft. Thus, it is of critical need to identify a biomarker that is sensitive and specific to the early detection of allograft injuries. Urine, as the direct renal ultrafiltrate that can be obtained noninvasively, directly reflects intrarenal processes in the allograft at greater accuracy than analysis of peripheral blood. We review transcriptomic, metabolomic, genomic, and proteomic discovery-based approaches to identifying urinary biomarkers for the noninvasive detection of allograft injuries, as well as the use of urine cell-free DNA in the QSant urine assay as a sensitive surrogate for the renal allograft biopsy for rejection diagnosis.


Subject(s)
Kidney Transplantation , Allografts , Biomarkers , Graft Rejection/diagnosis , Kidney , Kidney Transplantation/adverse effects , Proteomics
13.
Am J Transplant ; 22(3): 876-885, 2022 03.
Article in English | MEDLINE | ID: mdl-34687145

ABSTRACT

Maintenance of systemic homeostasis by kidney requires the coordinated response of diverse cell types. The use of single-cell RNA sequencing (scRNAseq) for patient tissue samples remains fraught with difficulties with cell isolation, purity, and experimental bias. The ability to characterize immune and parenchymal cells during transplant rejection will be invaluable in defining transplant pathology where tissue availability is restricted to needle biopsy fragments. Herein, we present feasibility data for multiplexing approach for droplet scRNAseq (Mux-Seq). Mux-Seq has the potential to minimize experimental batch bias and variation even with very small sample input. In this first proof-of-concept study for this approach, explant tissues from six normal and two transplant recipients after multiple early post-transplant rejection episodes leading to nephrectomy due to aggressive antibody mediated rejection, were pooled for Mux-Seq. A computational tool, Demuxlet was applied for demultiplexing the individual cells from the pooled experiment. Each sample was also applied individually in a single microfluidic run (singleplex) to correlate results with the pooled data from the same sample. Our applied protocol demonstrated that data from Mux-Seq correlated highly with singleplex (Pearson coefficient 0.982) sequencing results, with the ability to identify many known and novel kidney cell types including different infiltrating immune cells. Trajectory analysis of proximal tubule and endothelial cells demonstrated separation between healthy and injured kidney from transplant explant suggesting evolving stages of cell- specific differentiation in alloimmune injury. This study provides the technical groundwork for understanding the pathogenesis of alloimmune injury and host tissue response in transplant rejection and normal human kidney and provides a protocol for optimized processing precious and low input human kidney biopsy tissue for larger scale studies.


Subject(s)
Endothelial Cells , Kidney Transplantation , Allografts , Graft Rejection/etiology , Graft Rejection/genetics , Humans , Kidney/pathology , Kidney Transplantation/adverse effects
14.
Am J Kidney Dis ; 79(4): 570-581, 2022 04.
Article in English | MEDLINE | ID: mdl-34571062

ABSTRACT

Blocking the complement system as a therapeutic strategy has been proposed for numerous glomerular diseases but presents myriad questions and challenges, not the least of which is demonstrating efficacy and safety. In light of these potential issues and because there are an increasing number of anticomplement therapy trials either planned or under way, the National Kidney Foundation facilitated an all-virtual scientific workshop entitled "Improving Clinical Trials for Anti-Complement Therapies in Complement-Mediated Glomerulopathies." Attended by patient representatives and experts in glomerular diseases, complement physiology, and clinical trial design, the aim of this workshop was to develop standards applicable for designing and conducting clinical trials for anticomplement therapies across a wide spectrum of complement-mediated glomerulopathies. Discussions focused on study design, participant risk assessment and mitigation, laboratory measurements and biomarkers to support these studies, and identification of optimal outcome measures to detect benefit, specifically for trials in complement-mediated diseases. This report summarizes the discussions from this workshop and outlines consensus recommendations.


Subject(s)
Complement Inactivator Proteins , Kidney Diseases , Complement Inactivator Proteins/therapeutic use , Complement System Proteins , Humans , Kidney
15.
Front Immunol ; 12: 769972, 2021.
Article in English | MEDLINE | ID: mdl-34925339

ABSTRACT

Diabetic kidney disease (DKD) is a key microvascular complication of diabetes, with few therapies for targeting renal disease pathogenesis and progression. We performed transcriptional and protein studies on 103 unique blood and kidney tissue samples from patients with and without diabetes to understand the pathophysiology of DKD injury and its progression. The study was based on the use of 3 unique patient cohorts: peripheral blood mononuclear cell (PBMC) transcriptional studies were conducted on 30 patients with DKD with advancing kidney injury; Gene Expression Omnibus (GEO) data was downloaded, containing transcriptional measures from 51 microdissected glomerulous from patients with DKD. Additionally, 12 independent kidney tissue sections from patients with or without DKD were used for validation of target genes in diabetic kidney injury by kidney tissue immunohistochemistry and immunofluorescence. PBMC DKD transcriptional analysis, identified 853 genes (p < 0.05) with increasing expression with progression of albuminuria and kidney injury in patients with diabetes. GEO data was downloaded, normalized, and analyzed for significantly changed genes. Of the 325 significantly up regulated genes in DKD glomerulous (p < 0.05), 28 overlapped in PBMC and diabetic kidney, with perturbed FcER1 signaling as a significantly enriched canonical pathway. FcER1 was validated to be significantly increased in advanced DKD, where it was also seen to be specifically co-expressed in the kidney biopsy with tissue mast cells. In conclusion, we demonstrate how leveraging public and private human transcriptional datasets can discover and validate innate immunity and inflammation as key mechanistic pathways in DKD progression, and uncover FcER1 as a putative new DKD target for rational drug design.


Subject(s)
Diabetic Nephropathies/genetics , Gene Expression Profiling/methods , Kidney/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, IgE/genetics , Signal Transduction/genetics , Adult , Aged , Cohort Studies , Diabetic Nephropathies/metabolism , Disease Progression , Female , Gene Regulatory Networks , Humans , Immunohistochemistry/methods , Male , Middle Aged , Oligonucleotide Array Sequence Analysis/methods , Receptors, IgE/metabolism
16.
Urol Case Rep ; 39: 101854, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34621621

ABSTRACT

The Kidney Injury Test (KIT) Stone-Score provides an objective measure of stone burden. Unlike urinary supersaturation the KIT Stone-Scores assess underlying stone disease rather than urinary solute composition. We report a case of a 43-year-old woman with no history of nephrolithiasis who underwent an elective, voluntary KIT assay and was diagnosed with a large staghorn renal stone after an unanticipated markedly elevated score. This clinical scenario highlights the potential future use of the non-invasive urinary KIT assay as a reliable non-invasive tool to detect and monitor urinary stone disease.

17.
Front Med (Lausanne) ; 8: 548212, 2021.
Article in English | MEDLINE | ID: mdl-33928097

ABSTRACT

Urine proteins can serve as viable biomarkers for diagnosing and monitoring various diseases. A comprehensive urine proteome database, generated from a variety of urine samples with different disease conditions, can serve as a reference resource for facilitating discovery of potential urine protein biomarkers. Herein, we present a urine proteome database generated from multiple datasets using 2D LC-MS/MS proteome profiling of urine samples from healthy individuals (HI), renal transplant patients with acute rejection (AR) and stable graft (STA), patients with non-specific proteinuria (NS), and patients with prostate cancer (PC). A total of ~28,000 unique peptides spanning ~2,200 unique proteins were identified with a false discovery rate of <0.5% at the protein level. Over one third of the annotated proteins were plasma membrane proteins and another one third were extracellular proteins according to gene ontology analysis. Ingenuity Pathway Analysis of these proteins revealed 349 potential biomarkers in the literature-curated database. Forty-three percentage of all known cluster of differentiation (CD) proteins were identified in the various human urine samples. Interestingly, following comparisons with five recently published urine proteome profiling studies, which applied similar approaches, there are still ~400 proteins which are unique to this current study. These may represent potential disease-associated proteins. Among them, several proteins such as serpin B3, renin receptor, and periostin have been reported as pathological markers for renal failure and prostate cancer, respectively. Taken together, our data should provide valuable information for future discovery and validation studies of urine protein biomarkers for various diseases.

19.
Kidney Int ; 99(3): 498-510, 2021 03.
Article in English | MEDLINE | ID: mdl-33637194

ABSTRACT

Chronic kidney disease (CKD) and acute kidney injury (AKI) are common, heterogeneous, and morbid diseases. Mechanistic characterization of CKD and AKI in patients may facilitate a precision-medicine approach to prevention, diagnosis, and treatment. The Kidney Precision Medicine Project aims to ethically and safely obtain kidney biopsies from participants with CKD or AKI, create a reference kidney atlas, and characterize disease subgroups to stratify patients based on molecular features of disease, clinical characteristics, and associated outcomes. An additional aim is to identify critical cells, pathways, and targets for novel therapies and preventive strategies. This project is a multicenter prospective cohort study of adults with CKD or AKI who undergo a protocol kidney biopsy for research purposes. This investigation focuses on kidney diseases that are most prevalent and therefore substantially burden the public health, including CKD attributed to diabetes or hypertension and AKI attributed to ischemic and toxic injuries. Reference kidney tissues (for example, living-donor kidney biopsies) will also be evaluated. Traditional and digital pathology will be combined with transcriptomic, proteomic, and metabolomic analysis of the kidney tissue as well as deep clinical phenotyping for supervised and unsupervised subgroup analysis and systems biology analysis. Participants will be followed prospectively for 10 years to ascertain clinical outcomes. Cell types, locations, and functions will be characterized in health and disease in an open, searchable, online kidney tissue atlas. All data from the Kidney Precision Medicine Project will be made readily available for broad use by scientists, clinicians, and patients.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Adult , Humans , Kidney , Precision Medicine , Prospective Studies , Proteomics , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy
20.
JAMA Netw Open ; 4(1): e2035048, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33492376

ABSTRACT

Importance: Clinical decision and immunosuppression dosing in kidney transplantation rely on transplant biopsy tissue histology even though histology has low specificity, sensitivity, and reproducibility for rejection diagnosis. The inclusion of stable allografts in mechanistic and clinical studies is vital to provide a normal, noninjured comparative group for all interrogative studies on understanding allograft injury. Objective: To refine the definition of a stable allograft as one that is clinically, histologically, and molecularly quiescent using publicly available transcriptomics data. Design, Setting, and Participants: In this prognostic study, the National Center for Biotechnology Information Gene Expression Omnibus was used to search for microarray gene expression data from kidney transplant tissues, resulting in 38 studies from January 1, 2017, to December 31, 2018. The diagnostic annotations included 510 acute rejection (AR) samples, 1154 histologically stable (hSTA) samples, and 609 normal samples. Raw fluorescence intensity data were downloaded and preprocessed followed by data set merging and batch correction. Main Outcomes and Measures: The primary measure was area under the receiver operating characteristics curve from a set of feature selected genes and cell types for distinguishing AR from normal kidney tissue. Results: Within the 28 data sets, the feature selection procedure identified a set of 6 genes (KLF4, CENPJ, KLF2, PPP1R15A, FOSB, TNFAIP3) (area under the curve [AUC], 0.98) and 5 immune cell types (CD4+ T-cell central memory [Tcm], CD4+ T-cell effector memory [Tem], CD8+ Tem, natural killer [NK] cells, and Type 1 T helper [TH1] cells) (AUC, 0.92) that were combined into 1 composite Instability Score (InstaScore) (AUC, 0.99). The InstaScore was applied to the hSTA samples: 626 of 1154 (54%) were found to be immune quiescent and redefined as histologically and molecularly stable (hSTA/mSTA); 528 of 1154 (46%) were found to have molecular evidence of rejection (hSTA/mAR) and should not have been classified as stable allografts. The validation on an independent cohort of 6 months of protocol biopsy samples in December 2019 showed that hSTA/mAR samples had a significant change in graft function (r = 0.52, P < .001) and graft loss at 5-year follow-up (r = 0.17). A drop by 10 mL/min/1.73m2 in estimated glomerular filtration rate was estimated as a threshold in allograft transitioning from hSTA/mSTA to hSTA/mAR. Conclusions and Relevance: The results of this prognostic study suggest that the InstaScore could provide an important adjunct for comprehensive and highly quantitative phenotyping of protocol kidney transplant biopsy samples and could be integrated into clinical care for accurate estimation of subsequent patient clinical outcomes.


Subject(s)
Graft Rejection/genetics , Graft Rejection/immunology , Kidney Transplantation , Allografts , Biopsy , Datasets as Topic , Gene Expression , Humans , Kruppel-Like Factor 4 , Phenotype , Predictive Value of Tests , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...