Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 44(8): 3573-3597, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36005141

ABSTRACT

The matricellular protein osteopontin modulates cell-matrix interactions during tissue injury and healing. A complex multidomain structure of osteopontin enables it not only to bind diverse cell receptors but also to interact with various partners, including other extracellular matrix proteins, cytokines, and growth factors. Numerous studies have implicated osteopontin in the development and progression of myocardial remodeling in diverse cardiac diseases. Osteopontin influences myocardial remodeling by regulating extracellular matrix production, the activity of matrix metalloproteinases and various growth factors, inflammatory cell recruitment, myofibroblast differentiation, cardiomyocyte apoptosis, and myocardial vascularization. The exploitation of osteopontin loss- and gain-of-function approaches in rodent models provided an opportunity for assessment of the cell- and disease-specific contribution of osteopontin to myocardial remodeling. In this review, we summarize the recent knowledge on osteopontin regulation and its impact on various cardiac diseases, as well as delineate complex disease- and cell-specific roles of osteopontin in cardiac pathologies. We also discuss the current progress of therapeutics targeting osteopontin that may facilitate the development of a novel strategy for heart failure treatment.

2.
Article in English | MEDLINE | ID: mdl-34444046

ABSTRACT

Right ventricular (RV) function is the main determinant of the outcome of patients with pulmonary hypertension (PH). RV dysfunction develops gradually and worsens progressively over the course of PH, resulting in RV failure and premature death. Currently, approved therapies for the treatment of left ventricular failure are not established for the RV. Furthermore, the direct effects of specific vasoactive drugs for treatment of pulmonary arterial hypertension (PAH, Group 1 of PH) on RV are not fully investigated. Pulmonary artery banding (PAB) allows to study the pathogenesis of RV failure solely, thereby testing potential therapies independently of pulmonary vascular changes. This review aims to discuss recent studies of the mechanisms of RV remodeling and RV-directed therapies based on the PAB model.


Subject(s)
Hypertension, Pulmonary , Ventricular Dysfunction, Right , Animals , Disease Models, Animal , Humans , Hypertension, Pulmonary/drug therapy , Pulmonary Artery , Ventricular Function, Right , Ventricular Remodeling
3.
Article in English | MEDLINE | ID: mdl-33578749

ABSTRACT

Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.


Subject(s)
Altitude Sickness , Hypertension, Pulmonary , Pulmonary Edema , Altitude , Altitude Sickness/drug therapy , Altitude Sickness/prevention & control , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Hypoxia
4.
Wilderness Environ Med ; 28(3): 234-238, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28673745

ABSTRACT

High altitude pulmonary edema (HAPE) is a potentially life-threatening form of noncardiogenic pulmonary edema that may develop in otherwise healthy individuals upon ascent to high altitude. A constitutional susceptibility has been noted in some individuals, whereas others appear not to be susceptible at all. In our report, we present a case of HAPE triggered by concurrent respiratory tract infection and strenuous exercise in a mining worker with an abnormal rise in pulmonary artery pressure in response to acute hypoxia, without a prior history of HAPE during almost a year of commuting between high altitude and lowland areas.


Subject(s)
Altitude Sickness/diagnosis , Exercise , Hypertension, Pulmonary/diagnosis , Hypoxia/complications , Respiratory Tract Infections/complications , Adult , Humans , Kyrgyzstan , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...