Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 12(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35624601

ABSTRACT

Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation into small mode volumes containing the analyte. Here, we have engineered an ultranarrow metal-dielectric nano-cavity out of a film of the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) glycoprotein and a silver surface, held together by interaction between reduced protein sulfhydryl groups and silver. The concentration of light in this nano-cavity allows the label-free recording of the characteristic Raman spectra of protein samples smaller than 1 pg. This is sufficient for the ultrasensitive detection of viral protein antigens at physiologically relevant levels. Moreover, the protein SERS signal can be increased by several orders of magnitude by coating the RBD film with a nanometer-thick silver shell, thereby raising the cavity Q-factor. This ensures a sub-femtogram sensitivity of the viral antigen detection. A simple theoretical model explaining the observed additional enhancement of the SERS signal from the silver-coated protein is proposed. Our study is the first to obtain the characteristic Raman and SERS spectra of the RBD of S glycoprotein, the key SARS-CoV-2 viral antigen, directly, without the use of Raman-reporter molecules. Thus, our approach allows label-free recording of the characteristic spectra of viral antigens at concentrations orders of magnitude lower than those required for detecting the whole virus in biological media. This makes it possible to develop a high-performance optical detection method and conformational analysis of the pathogen and its variants.


Subject(s)
COVID-19 , Spectrum Analysis, Raman , Antigens, Viral , COVID-19/diagnosis , Humans , SARS-CoV-2 , Silver/chemistry , Spectrum Analysis, Raman/methods , Spike Glycoprotein, Coronavirus
2.
Nanomaterials (Basel) ; 11(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201314

ABSTRACT

Maximizing the surface-enhanced Raman scattering (SERS) is a significant effort focused on the substrate design. In this paper, we are reporting on an important enhancement in the SERS signal that has been reached with a hybrid asymmetric dimer array on gold film coupled to the efficient adsorption of thiophenol molecules on this array. Indeed, the key factor for the SERS effect is the adsorption efficiency of chemical molecules on the surface of plasmonic nanostructures, which is measured by the value of the adsorption constant usually named K. In addition, this approach can be applied to several SERS substrates allowing a prescriptive estimate of their relative performance as sensor and to probe the affinity of substrates for a target analyte. Moreover, this prescriptive estimate leads to higher predictability of SERS activity of molecules, which is also a key point for the development of sensors for a broad spectrum of analytes. We experimentally investigated the sensitivity of the Au/Si asymmetric dimer array on the gold film for SERS sensing of thiophenol molecules, which are well-known for their excellent adsorption on noble metals and serving as a proof-of-concept in our study. For this sensing, a detection limit of 10 pM was achieved as well as an adsorption constant K of 6 × 106 M-1. The enhancement factor of 5.2 × 1010 was found at the detection limit of 10 pM for thiophenol molecules.

3.
Anal Chim Acta ; 1100: 250-257, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31987148

ABSTRACT

Original multiscale flaked silver SERS-substrate (MFSS substrate) was applied for glycated albumin (GA) biosensing. The substrate is composed from silver flakes that have three orders of magnitude size dispersion: from 50 nm to 2 µm. The multiscale silver structure refracts the incident light and various surface plasmons are excited. Some of the internal plasmons are localized and give rise of the large local electric field. It was demonstrated that Raman scattering signal strongly depends: a) on "hot spots" formation at the edges and points of contact of silver plates, and b) on the angle of incidence. As a result the silver structure operates as an effective SERS substrate. To achieve the selectivity to glycated part, the surface of SERS-substrate was modified with 4-mercaptophenylboronic acid (4-mPBA). Various saccharides (Fru, Glc, Suc, Dex) were taken as model compounds for the glycated proteins determination. The saccharides contain cis-diol groups that form five- or six-membered ethers with boronic acid. Spectrum of SERS-substrate changes after sugar/glycated albumin treatment. Main differences in the SERS-spectra of sugar/glycated albumin treated SERS-substrate and control are referred to phenylboronic acid vibrations (999, 1021, 1072 and 1589 cm-1). Principal component analysis (PCA) and Partial Least Squares Regression (PLS-R) were used to discriminate spectra and to construct calibration curve, as well as to measure GA values in real samples of human plasma. Multiscale flaked silver SERS-substrate modified with 4-mPBA allows quantitative one-step biosensing of glycated albumin in 15 µl of human plasma.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Metal Nanoparticles/chemistry , Serum Albumin/analysis , Silver/chemistry , Glycation End Products, Advanced , Humans , Spectrum Analysis, Raman , Glycated Serum Albumin
4.
Nanomaterials (Basel) ; 9(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717468

ABSTRACT

We present here the amplification of the surface-enhanced Raman scattering (SERS) signal of nanodisks on a gold film for SERS sensing of small molecules (thiophenol) with an excellent sensitivity. The enhancement is achieved by adding a silicon underlayer for the composition of the nanodisks. We experimentally investigated the sensitivity of the suggested Au/Si disk-shaped nanoresonators for chemical sensing by SERS. We achieved values of enhancement factors of 5 × 10 7 - 6 × 10 7 for thiophenol sensing. Moreover, we remarked that the enhancement factor (EF) values reached experimentally behave qualitatively as those evaluated with the E 4 model.

5.
Materials (Basel) ; 12(1)2018 Dec 29.
Article in English | MEDLINE | ID: mdl-30598001

ABSTRACT

Metal-dielectric micro/nano-composites have surface plasmon resonances in visible and near-infrared domains. Excitation of coupled metal-dielectric resonances is also important. These different resonances can allow enhancement of the electromagnetic field at a subwavelength scale. Hybrid plasmonic structures act as optical antennae by concentrating large electromagnetic energy in micro- and nano-scales. Plasmonic structures are proposed for various applications such as optical filters, investigation of quantum electrodynamics effects, solar energy concentration, magnetic recording, nanolasing, medical imaging and biodetection, surface-enhanced Raman scattering (SERS), and optical super-resolution microscopy. We present the review of recent achievements in experimental and theoretical studies of metal-dielectric micro and nano antennae that are important for fundamental and applied research. The main impact is application of metal-dielectric optical antennae for the efficient SERS sensing.

6.
Opt Express ; 25(15): 17021-17038, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789200

ABSTRACT

Optical properties of two dimensional periodic system of the silicon micro-cones are investigated. The metasurface, composed of the silicon tips, shows enhancement of the local optical field. Finite element computer simulations as well as real experiment reveal anomalous optical response of the dielectric metasurface due to excitation of the dielectric resonances. Various electromagnetic resonances are considered in the dielectric cone. The metal-dielectric resonances, which are excited between metal nanoparticles and dielectric cones, are also considered. The resonance local electric field can be much larger than the field in the usual surface plasmon resonances. To investigate local electric field the signal molecules are deposited on the metal nanoparticles. We demonstrate enhancement of the electromagnetic field and Raman signal from the complex of DTNB acid molecules and gold nanoparticles, which are distributed over the metasurface. The metasurfaces composed from the dielectric resonators can have quasi-continuous spectrum and serve as an efficient SERS substrates.

7.
Opt Express ; 24(7): 7133-50, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27137006

ABSTRACT

New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances. We demonstrate the enhancement of the Raman signal from the complex of 5,5'-dithio-bis-[2-nitrobenzoic acid] molecules and gold nanoparticle (DTNB-Au-NP), which is immobilized on the surface of the barshaped dielectric metamaterial.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036609, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16605679

ABSTRACT

It is demonstrated that metallic horseshoe-shaped (also referred to as u-shaped) nanostructures can exhibit a magnetic resonance in the optical spectral range. This magnetic plasmon resonance is distinct from the purely geometric LC resonance occurring in perfectly conducting split rings because the plasmonic nature of the metal plays the dominant role. Similarly to the electrical surface plasmon resonance, the magnetic plasmon resonance is determined primarily by the metal properties and nanostructure geometry rather than by the ratio of the wavelength and the structure's size. Magnetic plasmon resonance occurs in nanostructures much smaller in size than the optical wavelength. Electromagnetic properties of periodically assembled horseshoe-shaped nanostructures are investigated, and the close proximity of the electrical and magnetic plasmon resonances is exploited in designing a negative index metamaterial. Close to the magnetic plasmon resonance frequency both magnetic permeability mu and electric permittivity epsilon can become negative, paving the way for the development of subwavelength negative index materials in the optical range.

9.
Opt Lett ; 30(24): 3356-8, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16389830

ABSTRACT

A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and the magnetic components of light. The refractive index is retrieved from direct phase and amplitude measurements for transmission and reflection, which are all in excellent agreement with simulations. Both experiments and simulations demonstrate that a negative refractive index n' approximately -0.3 is achieved at the optical communication wavelength of 1.5 microm using the array of nanorods. The retrieved refractive index critically depends on the phase of the transmitted wave, which emphasizes the importance of phase measurements in finding n'.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 2): 056611, 2003 May.
Article in English | MEDLINE | ID: mdl-12786300

ABSTRACT

An exact and very efficient numerical method for calculating the effective conductivity and local-field distributions in random R-L-C networks is developed. Using this method, the local-field properties of random metal-dielectric films are investigated in a wide spectral range and for a variety of metal concentrations p. It is shown that for metal concentrations close to the percolation threshold (p=p(c)) and frequencies close to the resonance, the local-field intensity is characterized by a non-Gaussian, exponentially broad distribution. For low and high metal concentrations a scaling region is formed that is due to the increasing number of noninteracting dipoles. The local electric fields are studied in terms of characteristic length parameters. The roles of both localized and extended eigenmodes in Kirchhoff's Hamiltonian are investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...