Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Cells ; 20(12): 1059-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26525166

ABSTRACT

Homologous recombination (HR) is initiated by double-strand break (DSB) resection, during which DSBs are processed by nucleases to generate 3' single-strand DNA. DSB resection is initiated by CtIP and Mre11 followed by long-range resection by Dna2 and Exo1 in Saccharomyces cerevisiae. To analyze the relative contribution of four nucleases, CtIP, Mre11, Dna2 and Exo1, to DSB resection, we disrupted genes encoding these nucleases in chicken DT40 cells. CtIP and Dna2 are required for DSB resection, whereas Exo1 is dispensable even in the absence of Dna2, which observation agrees with no developmental defect in Exo1-deficient mice. Despite the critical role of Mre11 in DSB resection in S. cerevisiae, loss of Mre11 only modestly impairs DSB resection in DT40 cells. To further test the role of CtIP and Mre11 in other species, we conditionally disrupted CtIP and MRE11 genes in the human TK6 B cell line. As with DT40 cells, CtIP contributes to DSB resection considerably more significantly than Mre11 in TK6 cells. Considering the critical role of Mre11 in HR, this study suggests that Mre11 is involved in a mechanism other than DSB resection. In summary, CtIP and Dna2 are sufficient for DSB resection to ensure efficient DSB repair by HR.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Deoxyribonucleases/genetics , Deoxyribonucleases/metabolism , Homologous Recombination , Animals , Carrier Proteins/metabolism , Cell Line , Chickens , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Humans
2.
PLoS One ; 7(11): e50480, 2012.
Article in English | MEDLINE | ID: mdl-23209751

ABSTRACT

In the methylotrophic bacterium Methylobacterium extorquens strain AM1, MxaF, a Ca(2+)-dependent methanol dehydrogenase (MDH), is the main enzyme catalyzing methanol oxidation during growth on methanol. The genome of strain AM1 contains another MDH gene homologue, xoxF1, whose function in methanol metabolism has remained unclear. In this work, we show that XoxF1 also functions as an MDH and is La(3+)-dependent. Despite the absence of Ca(2+) in the medium strain AM1 was able to grow on methanol in the presence of La(3+). Addition of La(3+) increased MDH activity but the addition had no effect on mxaF or xoxF1 expression level. We purified MDH from strain AM1 grown on methanol in the presence of La(3+), and its N-terminal amino acid sequence corresponded to that of XoxF1. The enzyme contained La(3+) as a cofactor. The ΔmxaF mutant strain could not grow on methanol in the presence of Ca(2+), but was able to grow after supplementation with La(3+). Taken together, these results show that XoxF1 participates in methanol metabolism as a La(3+)-dependent MDH in strain AM1.


Subject(s)
Alcohol Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Lanthanum/metabolism , Methylobacterium extorquens/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...