Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 34(43)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35985318

ABSTRACT

Hydrogen concentrations in thin self-supporting samples of polyphenylene sulfide (PPS) and muscovite have been determined by nuclear-elastic recoil detection analysis (ERDA) of transmission layout. The analysis procedure is based only on the database of stopping power and recoil cross section for material analysis, without using any reference sample of known H content. For the PPS sample, the determined value of(2.87±0.26)×1022H cm-3is in good agreement with the calculated value of3.01×1022H cm-3. For the muscovite sample, the H concentration originating each from bound water and absorbed water is uniform over the entire thickness of the sample. The determined concentration(9.43±0.75)×1021H cm-3of the muscovite agrees excellently with the value of9.36×1021H cm-3obtained from other quantitative analyses typically applied for minerals. The present results demonstrate the capability of accurate determination of H contents in materials and minerals by transmission ERDA.

2.
J Phys Condens Matter ; 33(46)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34311445

ABSTRACT

Using stacked samples of Al foil and H-containing resin film, we have carried out elastic recoil detection analysis with transmission layout (T-ERDA) to investigate the depth resolution in the measurements of H distribution in Al. For narrow and wide acceptance conditions of the detector, the depth resolutions of 1.5-4.9µm at several depths in Al of 50 and 80µm thicknesses have been determined for incidence of 8 MeV4He. While the main factor to degrade the depth resolution is the energy straggling of recoil H for narrow acceptance conditions, it is the extended low-energy side of the H spectrum for wide acceptance conditions. The knowledge obtained in this work is useful for analysis of 3D images of H distribution measured by T-ERDA, for example, future analysis of minerals or natural glass samples to determine abundances and distributions of water or OH in the samples.

3.
Anal Sci ; 36(5): 631-635, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32092734

ABSTRACT

Environmental contaminations of 129I were continuously monitored in various sample preparation rooms for accelerator mass spectrometry at the University of Tsukuba. Monitoring of 129I was performed in the rooms used for the treatment of samples in the past, in order to compare with the results obtained in the sample preparation rooms. Ambient levels of atmospheric 129I in each room were estimated from the measured concentrations in the alkali trap solutions. This article reports the results of one year of monitoring the temporal changes of stable iodine (127I) and 129I contamination rates in the alkali trap solutions. It was found that 129I contamination rates were lower than approximately 104 atoms cm-2 day-1 in the rooms where ether no samples or only samples with environmental background levels of 129I were handled. Values from 104 to 105 atoms cm-2 day-1 were recorded in another room where environmental samples, such as the samples derived from nuclear power plant accidents, were treated. Higher levels of 129I, ranging from 106 to 107 atoms cm-2 day-1, were recorded in rooms used for treating neutron-activated iodine. The experimental results show that the 129I level depended on the 129I sample-preparation histories for the respective rooms. It is possible to estimate the 129I contamination risk from the atmosphere to the samples by knowing the 129I level in the preparation room.

4.
Mar Environ Res ; 142: 91-99, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30290965

ABSTRACT

The anthropogenic long-lived radionuclide 129I is receiving increased attraction as a new oceanic tracer in addition to usage as a fingerprint of radionuclide contamination of the marine environment. To demonstrate the robustness of 129I as an oceanic tracer in the Northwest Pacific area, specifically in the Japan Sea, the input history of 129I to surface seawater was reconstructed using a hermatypic coral core sample from Iki Island in the Tsushima strait. Iodine isotopes in each annual band were measured using AMS and ICP-MS after appropriate pre-treatments of small amounts of coral powder. The 129I/127I ratios in the 1940s were almost at background levels (<1 × 10-11) and increased abruptly in the early 1950s. Thereafter, the ratios continuously increased with some fluctuations; the maximum ratio, 7.13 ±â€¯0.72 × 10-11, being found in the late 1990s. After that period, the ratios remained nearly constant until the present time (2011). The 129I originated mainly from the nuclear weapons testings of the 1950s and the early 1960s, and from airborne releasing by nuclear reprocessing facilities. The dataset obtained here was used to construct a simple model to estimate the diffusion coefficient of 129I in the Japan Sea. The 129I/236U ratios over the observation period were also reconstructed to help constraining sources of 129I to the marine environment. Based on the results, the 129I/236U ratio obtained here could be an endmember of the water mass in the Kuroshio Current area of the Northwest Pacific Ocean.


Subject(s)
Anthozoa/chemistry , Models, Theoretical , Seawater/chemistry , Water Pollutants, Radioactive/analysis , Animals , Anthozoa/metabolism , Japan , Nuclear Weapons , Pacific Ocean , Time Factors
5.
Article in English | MEDLINE | ID: mdl-30050004

ABSTRACT

Evaluation of radiation exposure from diet is necessary under the assumption of a virtual accident as a part of emergency preparedness. Here, we developed a model with complete consideration of the regional food trade using deposition data simulated by a transport model, and estimated the dietary intake of radionuclides and the effectiveness of regulation (e.g., restrictions on the distribution of foods) after the Fukushima accident and in virtual accident scenarios. We also evaluated the dilution factors (i.e., ratios of contaminated foods to consumed foods) and cost-effectiveness of regulation as basic information for setting regulatory values. The doses estimated under actual emission conditions were generally consistent with those observed in food-duplicate and market-basket surveys within a factor of three. Regulation of restricted food distribution resulted in reductions in the doses of 54⁻65% in the nearest large city to the nuclear power plant. The dilution factors under actual emission conditions were 4.4% for radioiodine and 2.7% for radiocesium, which are ~20 times lower than those used in the Japanese provisional regulation values after the Fukushima accident. Strict regulation worsened the cost-effectiveness for both radionuclides. This study highlights the significance and utility of the developed model for a risk analysis of emergency preparedness and regulation.


Subject(s)
Computer Simulation , Food Contamination, Radioactive/prevention & control , Fukushima Nuclear Accident , Radiation Exposure/prevention & control , Radiation Monitoring/methods , Food Contamination, Radioactive/analysis , Humans , Japan , Nuclear Power Plants , Radiation Exposure/analysis , Risk , Water Pollutants, Radioactive/analysis
6.
Sci Adv ; 3(2): e1600446, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28246631

ABSTRACT

Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.

7.
J Environ Radioact ; 151 Pt 1: 209-217, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26492397

ABSTRACT

To evaluate the deposition density and extent of subsurface infiltration of (129)I and (137)Cs in the restricted area that was highly contaminated by the accident of Fukushima Dai-ichi Nuclear Power Plant, cumulative inventories of (129)I and (137)Cs, concentrations of (129)I and (137)Cs, and (129)I/(137)Cs ratio in 30-cm-long soil columns were compared with pre-accident levels from the same area. The cores were collected before and after the accident from locations of S-1 (4 km west of FDNPP) and S-2 (8 km west of FDNPP). Deposition densities of (129)I and (137)Cs in the soil following the accident were 0.90-2.33 Bq m(-2) and 0.80-4.04 MBq m(-2), respectively, which were 14-39 and 320-510 times larger than the pre-accident levels of (129)I (59.3-63.3 mBq m(-2)) and (137)Cs (2.51-7.88 kBq m(-2)), respectively. Approximately 90% of accident-derived (129)I and (137)Cs deposited in the 30-cm soil cores was concentrated in the surface layer from 0 to 44-95 kg m(-2) of mass depth (0-4.3-6.2 cm depth) and from 0 to 16-25 kg m(-2) of mass depth (0-1.0-3.1 cm depth), respectively. The relaxation mass depths (h0) of 10.8-11.2 kg m(-2) for (129)I estimated in the previous study were larger than those of 8.1-10.6 kg m(-2) for (137)Cs at both sites, owing to the larger infiltration depth of radioiodine mainly by the gravitational water penetration in the surface soil in our study sites. Approximately 7-9% of the accident-derived (129)I was present in the lower layer from 44 to 100 kg m(-2) (4.3-8.6 cm depth) at S-1, and from 95 to 160 kg m(-2) (6.2-10.2 cm depth) at S-2. Approximately 1% of (137)Cs seems to infiltrate deeper than (129)I in the lower layer at each site in contrast to the surface layer.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Iodine Radioisotopes/analysis , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Japan , Nuclear Power Plants , Seasons
8.
J Environ Radioact ; 106: 73-80, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22305003

ABSTRACT

Essential parameters for the applications of (36)Cl as a tracer in groundwater studies include the initial (36)Cl/Cl ratio, at the time of recharge, and/or the natural background deposition flux of (36)Cl in the recharge area. To facilitate the hydrological use of (36)Cl in central Japan, this study aimed to obtain a precise estimate of the long-term average local (36)Cl flux and to characterize its seasonal variability. The (36)Cl in precipitation was continuously monitored in Tsukuba, central Japan over a period of >5 years. The (36)Cl flux showed a clear seasonal variation with an annual peak during the spring, which was attributed to the seasonal variability of tropopause height. The long-term average (36)Cl flux (32±2atoms m(-2)s(-1)), estimated from the measured data, was consistent with the prediction from the (36)Cl latitudinal fallout model scaled using the global mean production rate of 20atoms m(-2)s(-1). The initial (36)Cl/Cl ratio was estimated to be (41±6)×10(-15), which is similar to that of pre-bomb groundwater in the Tsukuba Upland. An observation period covering an 11-year solar cycle would yield more accurate estimates of the values, given the increased (36)Cl flux during the solar minimum.


Subject(s)
Background Radiation , Chlorine/analysis , Radioactive Pollutants/analysis , Radioisotopes/analysis , Japan , Radiation Monitoring , Seasons , Weather
9.
Proc Natl Acad Sci U S A ; 108(49): 19526-9, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22084070

ABSTRACT

A tremendous amount of radioactivity was discharged because of the damage to cooling systems of nuclear reactors in the Fukushima No. 1 nuclear power plant in March 2011. Fukushima and its adjacent prefectures were contaminated with fission products from the accident. Here, we show a geographical distribution of radioactive iodine, tellurium, and cesium in the surface soils of central-east Japan as determined by gamma-ray spectrometry. Especially in Fukushima prefecture, contaminated area spreads around Iitate and Naka-Dori for all the radionuclides we measured. Distributions of the radionuclides were affected by the physical state of each nuclide as well as geographical features. Considering meteorological conditions, it is concluded that the radioactive material transported on March 15 was the major contributor to contamination in Fukushima prefecture, whereas the radioactive material transported on March 21 was the major source in Ibaraki, Tochigi, Saitama, and Chiba prefectures and in Tokyo.


Subject(s)
Earthquakes , Radioactive Fallout/analysis , Radioactive Hazard Release , Radioisotopes/analysis , Cesium Radioisotopes/analysis , Geography , Iodine Radioisotopes/analysis , Japan , Nuclear Reactors , Soil/analysis , Soil Pollutants, Radioactive/analysis , Spectrometry, Gamma
10.
Ground Water ; 49(6): 891-902, 2011.
Article in English | MEDLINE | ID: mdl-21309769

ABSTRACT

We propose a methodology for estimating the residence time of groundwater based on bomb-produced (36)Cl. Water samples were collected from 28 springs and 2 flowing wells located around Mt. Fuji, Central Japan. (36)Cl/Cl ratios in the water samples, determined by accelerator mass spectrometry (AMS), were between 43 × 10(-15) and 412 × 10(-15). A reference time series of the above-background (i.e., bomb-derived) (36)Cl concentration was constructed by linearly scaling the background-corrected Dye-3 data according to the estimated total bomb-produced (36)Cl fallout in the Mt. Fuji area. Assuming piston flow transport, estimates of residence time were obtained by comparing the measured bomb-derived (36)Cl concentrations in spring water with the reference curve. The distribution of (36)Cl-based residence times is basically consistent with that of tritium-based estimates calculated from data presented in previous studies, although the estimated residence times differ between the two tracers. This discrepancy may reflect chlorine recycling via vegetation or the relatively small change in fallout rate, approximately since 1975, which would give rise to large uncertainties in (36)Cl-based estimates of recharge for the period, approximately since 1975. Given the estimated ages for groundwater from flowing wells, dating based on a (36)Cl bomb pulse may be more reliable and sensitive for groundwater recharged before 1975, back as far as the mid-1950s.


Subject(s)
Chlorine/analysis , Environmental Monitoring/methods , Groundwater/analysis , Radioisotopes/analysis , Japan
SELECTION OF CITATIONS
SEARCH DETAIL
...