Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Biochem Nutr ; 73(3): 214-220, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37970548

ABSTRACT

Fibrosis, induced by reactive oxygen species (ROS) production in neutrophils, has harmful effects on the liver and various other organs. However, little is known about the association between liver fibrosis and ROS levels in neutrophils in the general population. This large-scale epidemiological study aimed to determine the association between liver fibrosis and neutrophil-generated ROS levels according to age and sex in the general population. This cross-sectional study included 1,000 participants from a district health promotion project. Participants were grouped based on sex (male; female) and age (young, <65 years; old, ≥65 years). The four groups were as follows: male, young (n = 289); male, old (n = 100); female, young (n = 425); and female, old (n = 186). Liver fibrosis was assessed using the fibrosis 4 (FIB-4) index, aspartate aminotransferase-to-platelet ratio index (APRI), and non-alcoholic fatty liver disease (NAFLD) fibrosis score (NFS). Basal and stimulated ROS were considered in the analysis. Multiple linear analyses showed (1) significant positive correlations between all liver fibrosis scores and basal ROS in the young groups, and (2) significant negative correlations between NFS and stimulated ROS in females. Preventing liver fibrosis through neutrophil-related immune system enhancement may avert the development of lifestyle-related diseases and infections.

2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686272

ABSTRACT

The association between liver fibrosis and oral or gut microbiota has been studied before. However, epidemiological studies in the general population are limited owing to the difficulty of noninvasive liver-fibrosis assessment. FibroScan-asparate aminotransferase (FAST) scores can be used to accurately and non-invasively evaluate liver fibrosis. This study aimed to determine the association between liver fibrosis and oral or gut microbiota using the FAST score in the general population. After propensity score matching of 1059 participants based on sex, age, body mass index, homeostasis model assessment of insulin resistance, and triglyceride levels, 125 (non-liver-fibrosis group, 100; liver fibrosis group, 25) were included. The diversity of gut microbiota differed significantly between the two groups; however, no significant differences were noted in their oral microbiota. The liver fibrosis group showed an increase in the relative abundance of Fusobacteria strains and a decrease in the relative abundance of Faecalibacterium, with the presence of Fusicatenibacter in the gut microbiota. Feacalibacterium was not identified as an independent factor of liver fibrosis in adjusting the fatty liver index. In the general population, gut microbiota may be more involved in liver fibrosis than oral microbiota.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Aspartate Aminotransferases , East Asian People , Liver Cirrhosis/diagnostic imaging
3.
PLoS One ; 17(11): e0277930, 2022.
Article in English | MEDLINE | ID: mdl-36417462

ABSTRACT

OBJECTIVE: We evaluated the clinical characteristics of metabolic dysfunction-associated fatty liver disease (MAFLD) to evaluate the usefulness of the MAFLD diagnostic criteria in a resident health survey. METHODS: In 1056 participants of a health survey, we compared obesity, diabetes, metabolic dysregulation, FibroScan-aspartate aminotransferase (FAST) score, dietary habits, and gut microbiota between healthy individuals and participants with MAFLD and Nonalcoholic fatty liver disease (NAFLD). RESULTS: The proportion of participants with MAFLD in the fatty liver was higher than that with NAFLD (88.1% vs. 75.5%, respectively). Of 36 participants with a FAST score > 0.35, 29 (80.6%) participants had MAFLD and 23 (63.9%) participants had NAFLD. Of 29 patients with liver fibrosis, 26 (89.7%) participants had obesity and metabolic dysregulation. In the evaluation of diet, the total energy, protein, dietary fiber, and salt intake were significantly higher in participants with MAFLD than those in participants without fatty liver. In the microbiota analysis, the results of the linear discriminant analysis effect size analysis revealed nine bacterial genera that were significantly different in participants with MAFLD in comparison with participants without fatty liver. Of these genera, the relative abundance of Blautia was especially low in participants with MAFLD. CONCLUSION: In a resident health survey, participants with MAFLD had a higher proportion of fatty liver than those with NAFLD. MAFLD criteria could help in improved screening of participants with liver fibrosis. Therefore, the MAFLD criteria could be a useful diagnostic tool for aggressively identifying participants with a high risk of fatty liver. Additionally, Blautia might be involved in the development of MAFLD.


Subject(s)
Microbiota , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Cross-Sectional Studies , Diet , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/complications , Obesity/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...