Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-37259446

ABSTRACT

The macrolide erythromycin (ERM) inhibits excessive neutrophil accumulation and bone resorption in inflammatory tissues. We previously reported that the expression of developmental endothelial locus-1 (DEL-1), an endogenous anti-inflammatory factor induced by ERM, is involved in ERM action. Furthermore, DEL-1 is involved in the induction of bone regeneration. Therefore, in this study, we investigated whether ERM exerts an osteoblastogenic effect by upregulating DEL-1 under inflammatory conditions. We performed in vitro cell-based mechanistic analyses and used a model of Porphyromonas gingivalis lipopolysaccharide (LPS)-induced periodontitis to evaluate how ERM restores osteoblast activity. In vitro, P. gingivalis LPS stimulation suppressed osteoblast differentiation and bone formation. However, ERM treatment combined with P. gingivalis LPS stimulation upregulated osteoblast differentiation-related factors and Del1, indicating that osteoblast differentiation was restored. Alveolar bone resorption and gene expression were evaluated in a periodontitis model, and the results confirmed that ERM treatment increased DEL-1 expression and suppressed bone loss by increasing the expression of osteoblast-associated factors. In conclusion, ERM restores bone metabolism homeostasis in inflammatory environments possibly via the induction of DEL-1.

2.
Microbiol Spectr ; 11(3): e0014823, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37191519

ABSTRACT

Over the past 2 decades, the prevalence of macrolide-resistant Streptococcus pneumoniae (MRSP) has increased considerably, due to widespread macrolide use. Although macrolide usage has been proposed to be associated with treatment failure in patients with pneumococcal diseases, macrolides may be clinically effective for treating these diseases, regardless of the susceptibility of the causative pneumococci to macrolides. As we previously demonstrated that macrolides downregulate the transcription of various genes in MRSP, including the gene encoding the pore-forming toxin pneumolysin, we hypothesized that macrolides affect the proinflammatory activity of MRSP. Using HEK-Blue cell lines, we found that the supernatants from macrolide-treated MRSP cultures induced decreased NF-κB activation in cells expressing Toll-like receptor 2 and nucleotide-binding oligomerization domain 2 compared to the supernatants from untreated MRSP cells, suggesting that macrolides inhibit the release of these ligands from MRSP. Real-time PCR analysis revealed that macrolides significantly downregulated the transcription of various genes encoding peptidoglycan synthesis-, lipoteichoic acid synthesis-, and lipoprotein synthesis-related molecules in MRSP cells. The silkworm larva plasma assay demonstrated that the peptidoglycan concentrations in the supernatants from macrolide-treated MRSP cultures were significantly lower than those from untreated MRSP cultures. Triton X-114 phase separation revealed that lipoprotein expression decreased in macrolide-treated MRSP cells compared to the lipoprotein expression in untreated MRSP cells. Consequently, macrolides may decrease the expression of bacterial ligands of innate immune receptors, resulting in the decreased proinflammatory activity of MRSP. IMPORTANCE To date, the clinical efficacy of macrolides in pneumococcal disease is assumed to be linked to their ability to inhibit the release of pneumolysin. However, our previous study demonstrated that oral administration of macrolides to mice intratracheally infected with macrolide-resistant Streptococcus pneumoniae resulted in decreased levels of pneumolysin and proinflammatory cytokines in bronchoalveolar lavage fluid samples compared to the levels in samples from untreated infected control mice, without affecting the bacterial load in the fluid. This finding suggests that additional mechanisms by which macrolides negatively regulate proinflammatory cytokine production may be involved in their efficacy in vivo. Furthermore, in this study, we demonstrated that macrolides downregulated the transcription of various proinflammatory-component-related genes in S. pneumoniae, which provides an additional explanation for the clinical benefits of macrolides.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Animals , Mice , Streptococcus pneumoniae/genetics , Macrolides/pharmacology , Macrolides/therapeutic use , Ligands , Peptidoglycan , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pneumococcal Infections/microbiology , Microbial Sensitivity Tests
3.
Microbiol Immunol ; 67(2): 99-104, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36461153

ABSTRACT

Two plasminogen binding proteins were identified from a mouse infected with Streptococcus pneumoniae. The pneumococcal proteins were annotated as ATP-dependent Clp protease ATP-binding subunit (ClpC) and excinuclease ABC subunit C (UvrC) using the isobaric tags for relative and absolute quantification (iTRAQ) method. Recombinants of both proteins showed significant binding to plasminogen and were found to promote plasminogen activation by tissue-type plasminogen activator. In addition, ClpC and UvrC were LytA-dependently released into the culture supernatant and bound to the bacterial surface. These results suggest that S. pneumoniae releases ClpC and UvrC by autolysis and recruits them to the bacterial surface, where they bind to plasminogen and promote its activation, contributing to extracellular matrix degradation and tissue invasion.


Subject(s)
Bacterial Proteins , Endopeptidase Clp , Plasminogen , Streptococcus pneumoniae , Animals , Mice , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Plasminogen/metabolism , Streptococcus pneumoniae/metabolism , Host-Pathogen Interactions , Endopeptidase Clp/metabolism
4.
Sci Rep ; 12(1): 8159, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581391

ABSTRACT

Neutrophil elastase (NE) functions as a host defense factor; however, excessive NE activity can potentially destroy human tissues. Although NE activity is positively correlated to gingival crevicular fluid and clinical attachment loss in periodontitis, the underlying mechanisms by which NE aggravates periodontitis remain elusive. In this study, we investigated how NE induces periodontitis severity and whether NE inhibitors were efficacious in periodontitis treatment. In a ligature-induced murine model of periodontitis, neutrophil recruitment, NE activity, and periodontal bone loss were increased in the periodontal tissue. Local administration of an NE inhibitor significantly decreased NE activity in periodontal tissue and attenuated periodontal bone loss. Furthermore, the transcription of proinflammatory cytokines in the gingiva, which was significantly upregulated in the model of periodontitis, was significantly downregulated by NE inhibitor injection. An in vitro study demonstrated that NE cleaved cell adhesion molecules, such as desmoglein 1, occludin, and E-cadherin, and induced exfoliation of the epithelial keratinous layer in three-dimensional human oral epithelial tissue models. The permeability of fluorescein-5-isothiocyanate-dextran or periodontal pathogen was significantly increased by NE treatment in the human gingival epithelial monolayer. These findings suggest that NE induces the disruption of the gingival epithelial barrier and bacterial invasion in periodontal tissues, aggravating periodontitis.


Subject(s)
Alveolar Bone Loss , Periodontitis , Animals , Cell Adhesion Molecules , Gingiva/metabolism , Gingival Crevicular Fluid/metabolism , Humans , Leukocyte Elastase/metabolism , Mice , Periodontitis/microbiology
5.
FEBS Open Bio ; 12(6): 1206-1219, 2022 06.
Article in English | MEDLINE | ID: mdl-35298875

ABSTRACT

Recruitment of plasminogen is an important infection strategy of the human pathogen Streptococcus pneumoniae to invade host tissues. In Streptococcus aureus, triosephosphate isomerase (TPI) has been reported to bind plasminogen. In this study, the TPI of S. pneumoniae (TpiA) was identified through proteomic analysis of bronchoalveolar lavage fluid from a murine pneumococcal pneumonia model. The binding kinetics of recombinant pneumococcal TpiA with plasminogen were characterized using surface plasmon resonance (SPR, Biacore), ligand blot analyses, and enzyme-linked immunosorbent assay. Enhanced plasminogen activation and subsequent degradation by plasmin were also shown. Release of TpiA into the culture medium was observed to be dependent on autolysin. These findings suggest that S. pneumoniae releases TpiA via autolysis, which then binds to plasminogen and promotes its activation, thereby contributing to tissue invasion via degradation of the extracellular matrix.


Subject(s)
Plasminogen , Streptococcus pneumoniae , Animals , Fibrinolysin/metabolism , Humans , Mice , Plasminogen/metabolism , Proteomics , Streptococcus pneumoniae/metabolism , Triose-Phosphate Isomerase/metabolism
6.
Antibiotics (Basel) ; 10(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34943762

ABSTRACT

Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.

7.
Microbiol Spectr ; 9(2): e0031821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34468195

ABSTRACT

Streptococcus pneumoniae, the most common cause of community-acquired pneumonia, causes severe invasive infections, including meningitis and bacteremia. The widespread use of macrolides has been reported to increase the prevalence of macrolide-resistant S. pneumoniae (MRSP), thereby leading to treatment failure in patients with pneumococcal pneumonia. However, previous studies have demonstrated that several macrolides and lincosamides have beneficial effects on MRSP infection since they inhibit the production and release of pneumolysin, a pneumococcal pore-forming toxin released during autolysis. In this regard, we previously demonstrated that the mechanisms underlying the inhibition of pneumolysin release by erythromycin involved both the transcriptional downregulation of the gene encoding pneumolysin and the impairment of autolysis in MRSP. Here, using a cell supernatant of the culture, we have shown that clarithromycin inhibits pneumolysin release in MRSP. However, contrary to previous observations in erythromycin-treated MRSP, clarithromycin upregulated the transcription of the pneumococcal autolysis-related lytA gene and enhanced autolysis, leading to the leakage of pneumococcal DNA. On the other hand, compared to erythromycin, clarithromycin significantly downregulated the gene encoding pneumolysin. In a mouse model of MRSP pneumonia, the administration of both clarithromycin and erythromycin significantly decreased the pneumolysin protein level in bronchoalveolar lavage fluid and improved lung injury and arterial oxygen saturation without affecting bacterial load. Collectively, these in vitro and in vivo data reinforce the benefits of macrolides on the clinical outcomes of patients with pneumococcal pneumonia. IMPORTANCE Pneumolysin is a potent intracellular toxin possessing multiple functions that augment pneumococcal virulence. For over 10 years, sub-MICs of macrolides, including clarithromycin, have been recognized to decrease pneumolysin production and release from pneumococcal cells. However, this study indicates that macrolides significantly slowed pneumococcal growth, which may be related to decreased pneumolysin release recorded by previous studies. In this study, we demonstrated that clarithromycin decreases pneumolysin production through downregulation of ply gene transcription, regardless of its inhibitory activity against bacterial growth. Additionally, administration of clarithromycin resulted in the amelioration of lung injury in a mouse model of pneumonia induced by macrolide-resistant pneumococci. Therefore, therapeutic targeting of pneumolysin offers a good strategy to treat pneumococcal pneumonia.


Subject(s)
Clarithromycin/pharmacology , Erythromycin/pharmacology , Protein Synthesis Inhibitors/pharmacology , Streptococcus pneumoniae/metabolism , Streptolysins/biosynthesis , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Disease Models, Animal , Down-Regulation/drug effects , Humans , Lincosamides/pharmacology , Male , Mice , Mice, Inbred BALB C , Pneumonia/drug therapy , Pneumonia/microbiology , Streptococcus pneumoniae/genetics , Streptolysins/genetics , Transcription, Genetic/drug effects
8.
Antibiotics (Basel) ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33803007

ABSTRACT

Macrolides are used to treat various infectious diseases, including periodontitis. Furthermore, macrolides are known to have immunomodulatory effects; however, the underlying mechanism of their action remains unclear. DEL-1 has emerged as an important factor in homeostatic immunity and osteoclastogenesis. Specifically, DEL-1 is downregulated in periodontitis tissues. Therefore, in the present study, we investigated whether the osteoclastogenesis inhibitory effects of erythromycin (ERM) are mediated through upregulation of DEL-1 expression. We used a ligature-induced periodontitis model in C57BL/6Ncrl wild-type or DEL-1-deficient mice and in vitro cell-based mechanistic studies to investigate how ERM inhibits alveolar bone resorption. As a result of measuring alveolar bone resorption and gene expression in the tooth ligation model, ERM treatment reduced bone loss by increasing DEL-1 expression and decreasing the expression of osteoclast-related factors in wild-type mice. In DEL-1-deficient mice, ERM failed to suppress bone loss and gene expression of osteoclast-related factors. In addition, ERM treatment downregulated osteoclast differentiation and calcium resorption in in vitro experiments with mouse bone marrow-derived macrophages. In conclusion, ERM promotes the induction of DEL-1 in periodontal tissue, which may regulate osteoclastogenesis and decrease inflammatory bone resorption. These findings suggest that ERM may exert immunomodulatory effects in a DEL-1-dependent manner.

9.
BMC Microbiol ; 20(1): 361, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33238885

ABSTRACT

BACKGROUND: Sulfated vizantin, a recently developed immunostimulant, has also been found to exert antibiofilm properties. It acts not as a bactericide, but as a detachment-promoting agent by reducing the biofilm structural stability. This study aimed to investigate the mechanism underlying this activity and its species specificity using two distinct ex vivo oral biofilm models derived from human saliva. RESULTS: The biofilm, composed mainly of the genus Streptococcus and containing 50 µM of sulfated vizantin, detached significantly from its basal surface with rotation at 500 rpm for only 15 s, even when 0.2% sucrose was supplied. Expression analyses for genes associated with biofilm formation and bacterial adhesion following identification of the Streptococcus species, revealed that a variety of Streptococcus species in a cariogenic biofilm showed downregulation of genes encoding glucosyltransferases involved in the biosynthesis of water-soluble glucan. The expression of some genes encoding surface proteins was also downregulated. Of the two quorum sensing systems involved in the genus Streptococcus, the expression of luxS in three species, Streptococcus oralis, Streptococcus gordonii, and Streptococcus mutans, was significantly downregulated in the presence of 50 µM sulfated vizantin. Biofilm detachment may be facilitated by the reduced structural stability due to these modulations. As a non-specific reaction, 50 µM sulfated vizantin decreased cell surface hydrophobicity by binding to the cell surface, resulting in reduced bacterial adherence. CONCLUSION: Sulfated vizantin may be a candidate for a new antibiofilm strategy targeting the biofilm matrix while preserving the resident microflora.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Glycolipids/pharmacology , Streptococcus/physiology , Trehalose/analogs & derivatives , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Dental Caries/microbiology , Epithelial Cells/drug effects , Gene Expression/drug effects , Gingivitis/microbiology , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycolipids/chemistry , Humans , Quorum Sensing/drug effects , Quorum Sensing/genetics , Streptococcus/classification , Streptococcus/drug effects , Streptococcus/growth & development , Sulfates/chemistry , Trehalose/chemistry , Trehalose/pharmacology
10.
Proc Natl Acad Sci U S A ; 108(42): 17527-32, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21987818

ABSTRACT

The present study investigated whether kisspeptin-G protein-coupled receptor 54 (GPR54) signaling plays a role in mediating mating-induced ovulation in the musk shrew (Suncus murinus), a reflex ovulator. For this purpose, we cloned suncus Kiss1 and Gpr54 cDNA from the hypothalamus and found that suncus kisspeptin (sKp) consists of 29 amino acid residues (sKp-29). Injection of exogenous sKp-29 mimicked the mating stimulus to induce follicular maturation and ovulation. Administration of several kisspeptins and GPR54 agonists also induced presumed ovulation in a dose-dependent manner, and Gpr54 mRNA was distributed in the hypothalamus, showing that kisspeptins induce ovulation through binding to GPR54. The sKp-29-induced ovulation was blocked completely by pretreatment with a gonadotropin-releasing hormone (GnRH) antagonist, suggesting that kisspeptin activates GnRH neurons to induce ovulation in the musk shrew. In addition, in situ hybridization revealed that Kiss1-expressing cells are located in the medial preoptic area (POA) and arcuate nucleus in the musk shrew hypothalamus. The number of Kiss1-expressing cells in the POA or arcuate nucleus was up-regulated or down-regulated by estradiol, suggesting that kisspeptin neurons in these regions were the targets of the estrogen feedback action. Finally, mating stimulus largely induced c-Fos expression in Kiss1-positive cells in the POA, indicating that the mating stimulus activates POA kisspeptin neurons to induce ovulation. Taken together, these results indicate that kisspeptin-GPR54 signaling plays a role in the induction of ovulation in the musk shrew, a reflex ovulator, as it does in spontaneous ovulators.


Subject(s)
Kisspeptins/physiology , Ovulation/physiology , Shrews/physiology , Amino Acid Sequence , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/physiology , Base Sequence , Copulation/physiology , Corpus Luteum/physiology , DNA, Complementary/genetics , Estradiol/pharmacology , Female , Gene Expression/drug effects , Gonadotropin-Releasing Hormone/physiology , Kisspeptins/genetics , Male , Molecular Sequence Data , Ovarian Follicle/physiology , Ovulation/genetics , Phylogeny , Preoptic Area/drug effects , Preoptic Area/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Sequence Homology, Amino Acid , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...