Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791262

ABSTRACT

Orthodontic space closure following tooth extraction is often hindered by alveolar bone deficiency. This study investigates the therapeutic use of nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides loaded with polylactic-co-glycolic acid nanospheres (PLGA-NfDs) to mitigate alveolar bone loss during orthodontic tooth movement (OTM) following the bilateral extraction of maxillary first molars in a controlled experiment involving forty rats of OTM model with ethics approved. The decreased tendency of the OTM distance and inclination angle with increased bone volume and improved trabecular bone structure indicated minimized alveolar bone destruction. Reverse transcription-quantitative polymerase chain reaction and histomorphometric analysis demonstrated the suppression of inflammation and bone resorption by downregulating the expression of tartrate-resistant acid phosphatase, tumor necrosis factor-α, interleukin-1ß, cathepsin K, NF-κB p65, and receptor activator of NF-κB ligand while provoking periodontal regeneration by upregulating the expression of alkaline phosphatase, transforming growth factor-ß1, osteopontin, and fibroblast growth factor-2. Importantly, relative gene expression over the maxillary second molar compression side in proximity to the alveolus highlighted the pharmacological effect of intra-socket PLGA-NfD administration, as evidenced by elevated osteocalcin expression, indicative of enhanced osteocytogenesis. These findings emphasize that locally administered PLGA-NfD serves as an effective inflammatory suppressor and yields periodontal regenerative responses following tooth extraction.


Subject(s)
Nanospheres , Oligodeoxyribonucleotides , Polylactic Acid-Polyglycolic Acid Copolymer , Tooth Movement Techniques , Tooth Socket , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Nanospheres/chemistry , Tooth Movement Techniques/methods , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/administration & dosage , Tooth Socket/drug effects , Tooth Socket/pathology , Male , NF-kappa B/metabolism , Wound Healing/drug effects , Alveolar Bone Loss/therapy , Alveolar Bone Loss/pathology , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/metabolism , Tooth Extraction
2.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835111

ABSTRACT

Residual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which is recognized for regulating prototypical proinflammatory signals, physiological bone metabolism, pathologic bone destruction, and bone regeneration. The aim of this study was to investigate the therapeutic effect of NF-κB decoy ODNs on the extraction sockets of Wistar/ST rats when delivered by poly(lactic-co-glycolic acid) (PLGA) nanospheres. Microcomputed tomography and trabecular bone analysis following treatment with NF-κB decoy ODN-loaded PLGA nanospheres (PLGA-NfDs) demonstrated inhibition of vertical alveolar bone loss with increased bone volume, smoother trabecular bone surface, thicker trabecular bone, larger trabecular number and separation, and fewer bone porosities. Histomorphometric and reverse transcription-quantitative polymerase chain reaction analysis revealed reduced tartrate-resistant acid phosphatase-expressing osteoclasts, interleukin-1ß, tumor necrosis factor-α, receptor activator of NF-κB ligand, turnover rate, and increased transforming growth factor-ß1 immunopositive reactions and relative gene expression. These data demonstrate that local NF-κB decoy ODN transfection via PLGA-NfD can be used to effectively suppress inflammation in a tooth-extraction socket during the healing process, with the potential to accelerate new bone formation.


Subject(s)
Alveolar Bone Loss , NF-kappa B , Nanospheres , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , Rats , Alveolar Bone Loss/drug therapy , Alveolar Process , Glycols , Inflammation/metabolism , Nanospheres/therapeutic use , NF-kappa B/chemistry , NF-kappa B/pharmacology , Oligodeoxyribonucleotides/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Rats, Wistar , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...