Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(3): 112205, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36857180

ABSTRACT

Aerobic glycolysis, a metabolic pathway essential for effector T cell survival and proliferation, regulates differentiation of autoimmune T helper (Th) 17 cells, but the mechanism underlying this regulation is largely unknown. Here, we identify a glycolytic intermediate metabolite, phosphoenolpyruvate (PEP), as a negative regulator of Th17 differentiation. PEP supplementation or inhibition of downstream glycolytic enzymes in differentiating Th17 cells increases intracellular PEP levels and inhibits interleukin (IL)-17A expression. PEP supplementation inhibits expression of signature molecules for Th17 and Th2 cells but does not significantly affect glycolysis, cell proliferation, or survival of T helper cells. Mechanistically, PEP binds to JunB and inhibits DNA binding of the JunB/basic leucine zipper transcription factor ATF-like (BATF)/interferon regulatory factor 4 (IRF4) complex, thereby modulating the Th17 transcriptional program. Furthermore, daily administration of PEP to mice inhibits generation of Th17 cells and ameliorates Th17-dependent autoimmune encephalomyelitis. These data demonstrate that PEP links aerobic glycolysis to the Th17 transcriptional program, suggesting the therapeutic potential of PEP for autoimmune diseases.


Subject(s)
Autoimmunity , Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Phosphoenolpyruvate/metabolism , Th17 Cells , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Mice, Inbred C57BL
2.
Front Immunol ; 13: 901030, 2022.
Article in English | MEDLINE | ID: mdl-35837408

ABSTRACT

Clonal expansion and differentiation of various T helper subsets, such as Th1, Th2, and Th17 cells, depend on a complex of transcription factors, IRF4 and a BATF-containing AP-1 heterodimer. A major BATF heterodimeric partner, JunB, regulates Th17 differentiation, but the role of JunB in other T helper subsets is not well understood. Here we demonstrate that JunB is required for clonal expansion of Th1, Th2 and Th17 cells. In mice immunized with lipopolysaccharide (LPS), papain, or complete Freund's adjuvant (CFA), which induce predominantly Th1, Th2 and Th17 cells, respectively, accumulation of antigen-primed, Junb-deficient CD4+ T cells is significantly impaired. TCR-stimulated Junb-deficient CD4+ T cells are more sensitive to apoptosis, although they showed largely normal proliferation and cellular metabolism. JunB directly inhibits expression of genes involved in apoptosis, including Bcl2l11 (encoding Bim), by promoting IRF4 DNA binding at the gene locus. Taken together, JunB serves a critical function in clonal expansion of diverse T helper cells by inhibiting their apoptosis.


Subject(s)
T-Lymphocytes, Helper-Inducer , Th17 Cells , Transcription Factors , Animals , Cell Differentiation/physiology , Mice , Mice, Transgenic , Transcription Factors/metabolism
3.
Nat Commun ; 9(1): 5344, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559442

ABSTRACT

Foxp3-expressing CD4+ regulatory T (Treg) cells need to differentiate into effector Treg (eTreg) cells to maintain immune homeostasis. T-cell receptor (TCR)-dependent induction of the transcription factor IRF4 is essential for eTreg differentiation, but how IRF4 activity is regulated in Treg cells is still unclear. Here we show that the AP-1 transcription factor, JunB, is expressed in eTreg cells and promotes an IRF4-dependent transcription program. Mice lacking JunB in Treg cells develop multi-organ autoimmunity, concomitant with aberrant activation of T helper cells. JunB promotes expression of Treg effector molecules, such as ICOS and CTLA4, in BATF-dependent and BATF-independent manners, and is also required for homeostasis and suppressive functions of eTreg. Mechanistically, JunB facilitates the accumulation of IRF4 at a subset of IRF4 target sites, including those located near Icos and Ctla4. Thus, JunB is a critical regulator of IRF4-dependent Treg effector programs, highlighting important functions for AP-1 in Treg-mediated immune homeostasis.


Subject(s)
Interferon Regulatory Factors/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Transcription Factors/metabolism , Animals , Autoimmunity/genetics , Autoimmunity/immunology , CTLA-4 Antigen/biosynthesis , Cell Differentiation/immunology , Inducible T-Cell Co-Stimulator Protein/biosynthesis , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/genetics
4.
J Vet Med Sci ; 79(9): 1596-1602, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28740028

ABSTRACT

10-Hydroxy-2-decenoic acid (10H2DA) is a fatty acid found in royal jelly (RJ). In healthy mice, it activates 5'-AMP-activated protein kinase (AMPK) and increases glucose transporter 4 (GLUT4) translocation. Therefore, we examined whether 10H2DA has a potential therapeutic effect against type 2 diabetes in obese/diabetic KK-Ay mice. 10H2DA (3 mg/kg body weight) was administered to female KK-Ay mice for 4 weeks by oral gavage. Phenotypes for body weight, plasma glucose by oral glucose tolerance test and insulin levels were measured. mRNA and protein levels were determined using qRT-PCR and Western blot analyses, respectively. Long-term administration of 10H2DA significantly improved hyperglycemia and insulin resistance in KK-Ay mice, but did not prevent obesity. 10H2DA increased the expression of phosphorylated AMPK (pAMPK) protein in skeletal muscles; however, this expression did not correlate with increased GLUT4 translocation. Furthermore, 10H2DA neither enhanced the expression of adiponectin receptor mRNA nor activated the insulin signaling cascade, such as GSK-3ß phosphorylation, in the liver. We found that 10H2DA-treated mice had a significant increase in the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Pgc-1α) mRNA in skeletal muscles compared with non-treated group (P=0.0024). These findings suggest that 10H2DA is involved in the improvement of type 2 diabetes, at least in part via activation of Pgc-1α expression, but does not prevent obesity.


Subject(s)
Fatty Acids, Monounsaturated/pharmacology , Hyperglycemia/drug therapy , Insulin Resistance , Liver/enzymology , Obesity/drug therapy , Adiponectin/classification , Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue/metabolism , Animals , Gene Expression Regulation, Enzymologic/drug effects , Glucose Tolerance Test , Homeostasis , Liver/drug effects , Mice , Mice, Inbred Strains , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
J Theor Biol ; 429: 95-104, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28648563

ABSTRACT

Vasculogenesis is the earliest process in development for spontaneous formation of a primitive capillary network from endothelial progenitor cells. When human umbilical vein endothelial cells (HUVECs) are cultured on Matrigel, they spontaneously form a network structure which is widely used as an in vitro model of vasculogenesis. Previous studies indicated that chemotaxis or gel deformation was involved in spontaneous pattern formation. In our study, we analyzed the mechanism of vascular pattern formation using a different system, meshwork formation by HUVECs embedded in fibrin gels. Unlike the others, this experimental system resulted in a perfusable endothelial network in vitro. We quantitatively observed the dynamics of endothelial cell protrusion and developed a mathematical model for one-dimensional dynamics. We then extended the one-dimensional model to two-dimensions. The model showed that random searching by endothelial cells was sufficient to generate the observed network structure in fibrin gels.


Subject(s)
Endothelium, Vascular/physiology , Fibrin , Gels , Human Umbilical Vein Endothelial Cells/cytology , Models, Biological , Collagen , Drug Combinations , Humans , Laminin , Morphogenesis , Neovascularization, Physiologic , Proteoglycans
6.
Nat Commun ; 8: 15628, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28555647

ABSTRACT

CD4+ T-helper cells producing interleukin-17 (IL-17), known as T-helper 17 (TH17) cells, comprise heterogeneous subsets that exhibit distinct pathogenicity. Although pathogenic and non-pathogenic TH17 subsets share a common RORγt-dependent TH17 transcriptional programme, transcriptional regulatory mechanisms specific to each of these subsets are mostly unknown. Here we show that the AP-1 transcription factor JunB is critical for TH17 pathogenicity. JunB, which is induced by IL-6, is essential for expression of RORγt and IL-23 receptor by facilitating DNA binding of BATF at the Rorc locus in IL-23-dependent pathogenic TH17 cells, but not in TGF-ß1-dependent non-pathogenic TH17 cells. Junb-deficient T cells fail to induce TH17-mediated autoimmune encephalomyelitis and colitis. However, JunB deficiency does not affect the abundance of gut-resident non-pathogenic TH17 cells. The selective requirement of JunB for IL-23-dependent TH17 pathogenicity suggests that the JunB-dependent pathway may be a therapeutic target for autoimmune diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-17/genetics , Interleukin-23/metabolism , Th17 Cells/cytology , Transcription Factors/genetics , Animals , Basic-Leucine Zipper Transcription Factors/genetics , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Colitis/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Leukocytes, Mononuclear/cytology , Male , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Signal Transduction , Virulence
7.
J Vet Med Sci ; 79(2): 299-307, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-27890887

ABSTRACT

The study examined whether royal jelly (RJ) can prevent obesity and ameliorate hyperglycemia in type 2 diabetes. This study utilized obese/diabetic KK-Ay mice. RJ (10 mg/kg) was administered by oral gavage. Body weight, plasma glucose and insulin levels were measured. mRNA and protein levels were determined using quantitative reverse transcription polymerase chain reaction and western blotting, respectively. Four weeks of RJ administration improved hyperglycemia and partially suppressed body weight gain, although the latter effect did not reach statistical significance. In addition, RJ administration did not improve insulin resistance. RJ administration suppressed the mRNA expression of glucose-6-phosphatase (G6Pase), a key enzyme of gluconeogenesis, in the liver. Simultaneously, RJ administration induced adiponectin (AdipoQ) expression in abdominal fat, adiponectin receptor-1 (AdipoR1) expression in the liver and phosphorylated AMP-activated protein kinase (pAMPK) expression, which suppressed G6Pase levels in the livers of KK-Ay mice. pAMPK levels were also increased in skeletal muscle, but glucose transporter-4 (Glut4) translocation was not increased in the RJ supplementation group. The improvement in hyperglycemia due to long-term RJ administration may be because of the suppression of G6Pase expression through the upregulation of AdipoQ and AdipoR1 mRNA and pAMPK protein expressions.


Subject(s)
Fatty Acids/therapeutic use , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Mice, Obese/blood , AMP-Activated Protein Kinases/metabolism , Animals , Blood Glucose/analysis , Body Weight/drug effects , Female , Insulin/blood , Insulin Resistance , Mice , Reverse Transcriptase Polymerase Chain Reaction
8.
J Vet Med Sci ; 78(11): 1683-1691, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27523322

ABSTRACT

Type 2 diabetes is a polygenic disease and characterized by hyperglycemia and insulin resistance, and it is strongly associated with obesity. However, the mechanism by which obesity contributes to onset of type 2 diabetes is not well understood. We generated rat strains with a hyperglycemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr-/-) locus derived from the Zucker Fatty rat. Phenotypes for plasma glucose, and insulin levels were measured, and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blot analyses, respectively. Compared with the obese control strain F344-fa (Lepr-/-), plasma glucose levels of the obese F344-fa-nidd6 (Lepr-/- and Nidd6/of) significantly increased, and plasma insulin levels significantly decreased. These phenotypes were not observed in the lean strains, suggesting that the Nidd6/of locus harbors a diabetogenic gene associated with obesity. We measured the expression of 41 genes in the Nidd6/of QTL region of each strain and found that the mRNA expression levels of the two genes significantly differed between the obese strains. The two genes, pleckstrin homology domain-containing, family S member 1 (Plechs1) and peroxiredoxin III (Prdx3), were differentially expressed only in the obese rats, suggesting that these two genes are involved in the mild elevation of blood glucose levels and insulin resistance in obesity.


Subject(s)
Hyperglycemia/genetics , Obesity/genetics , Peroxiredoxin III/genetics , Animals , Blood Glucose/metabolism , Disease Models, Animal , Hyperglycemia/blood , Hyperglycemia/etiology , Insulin/blood , Insulin Resistance , Obesity/blood , Obesity/complications , Quantitative Trait Loci , RNA, Messenger/blood , Rats , Rats, Inbred F344 , Rats, Zucker
9.
Mamm Genome ; 26(11-12): 619-29, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26296322

ABSTRACT

Obesity is a major risk factor for the onset of type 2 diabetes; however, little is known about the gene(s) involved. Therefore, we developed new animal models of obesity to search for diabetogenic genes associated with obesity. We generated double congenic rat strains with a hyperglycaemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr-/-) locus derived from the Zucker Fatty rat; phenotypic analysis for plasma glucose and insulin levels and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blotting analyses, respectively. The double congenic strain F344-fa-nidd2 (Lepr-/- and Nidd2/of) exhibited significantly higher glucose levels and significantly lower hypoglycaemic response to insulin than the obese control strain F344-fa (Lepr-/-). These phenotypes were clearly observed in the obese strains but not in the lean strains. These results indicate that the Nidd2/of locus harbours a diabetogenic gene associated with obesity. We measured the expression of 60 genes in the Nidd2/of QTL region between the strains and found that the mRNA expression levels of five genes were significantly different between the strains under the condition of obesity. However, three of the five genes were differentially expressed in both obese and lean rats, indicating that these genes are not specific for the condition of obesity. Conversely, the other two genes, coenzyme Q2 (Coq2) and placenta-specific 8 (Plac8), were differentially expressed only in the obese rats, suggesting that these two genes are candidates for the onset of type 2 diabetes associated with obesity in rats.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Obesity/genetics , Pregnancy Proteins/genetics , Ubiquinone/genetics , Animals , Base Sequence , Body Weight , Disease Models, Animal , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease , Liver/metabolism , Male , Obesity/complications , Pregnancy Proteins/metabolism , Quantitative Trait Loci , Rats, Inbred F344 , Sequence Analysis, DNA , Ubiquinone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...