Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
PLoS Pathog ; 20(3): e1012101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502642

ABSTRACT

Emerging and reemerging tick-borne virus infections caused by orthonairoviruses (family Nairoviridae), which are genetically distinct from Crimean-Congo hemorrhagic fever virus, have been recently reported in East Asia. Here, we have established a mouse infection model using type-I/II interferon receptor-knockout mice (AG129 mice) both for a better understanding of the pathogenesis of these infections and validation of antiviral agents using Yezo virus (YEZV), a novel orthonairovirus causing febrile illnesses associated with tick bites in Japan and China. YEZV-inoculated AG129 mice developed hepatitis with body weight loss and died by 6 days post infection. Blood biochemistry tests showed elevated liver enzyme levels, similar to YEZV-infected human patients. AG129 mice treated with favipiravir survived lethal YEZV infection, demonstrating the anti-YEZV effect of this drug. The present mouse model will help us better understand the pathogenicity of the emerging tick-borne orthonairoviruses and the development of specific antiviral agents for their treatment.


Subject(s)
Nairovirus , Tick-Borne Diseases , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Mice, Knockout
2.
J Proteome Res ; 23(4): 1408-1419, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38536229

ABSTRACT

The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted public health globally. As the glycosylation of viral envelope glycoproteins is strongly associated with their immunogenicity, intensive studies have been conducted on the glycans of the glycoprotein of SARS-CoV-2, the spike (S) protein. Here, we conducted intensive glycoproteomic analyses of the SARS-CoV-2 S protein of ancestral and γ-variant strains using a combinatorial approach with two different technologies: mass spectrometry (MS) and lectin microarrays (LMA). Our unique MS1-based glycoproteomic technique, Glyco-RIDGE, in addition to MS2-based Byonic search, identified 1448 (ancestral strain) and 1785 (γ-variant strain) site-specific glycan compositions, respectively. Asparagine at amino acid position 20 (N20) is mainly glycosylated within two successive potential glycosylation sites, N17 and N20, of the γ-variant S protein; however, we found low-frequency glycosylation at N17. Our novel approaches, glycostem mapping and glycoleaf scoring, also illustrate the moderately branched/extended, highly fucosylated, and less sialylated natures of the glycoforms of S proteins. Subsequent LMA analysis emphasized the intensive end-capping of glycans by Lewis fucoses, which complemented the glycoproteomic features. These results illustrate the high-resolution glycoproteomic features of the SARS-CoV-2 S protein, contributing to vaccine design and understanding of viral protein synthesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Lectins , Polysaccharides/chemistry , Mass Spectrometry
3.
Sci Rep ; 14(1): 4204, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378856

ABSTRACT

Due to the synchronous circulation of seasonal influenza viruses and severe acute respiratory coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019 (COVID-19), there is need for routine vaccination for both COVID-19 and influenza to reduce disease severity. Here, we prepared individual WPVs composed of formalin-inactivated SARS-CoV-2 WK 521 (Ancestral strain; Co WPV) or influenza virus [A/California/07/2009 (X-179A) (H1N1) pdm; Flu WPV] to produce a two-in-one Co/Flu WPV. Serum analysis from vaccinated mice revealed that a single dose of Co/Flu WPV induced antigen-specific neutralizing antibodies against both viruses, similar to those induced by either type of WPV alone. Following infection with either virus, mice vaccinated with Co/Flu WPV showed no weight loss, reduced pneumonia and viral titers in the lung, and lower gene expression of proinflammatory cytokines, as observed with individual WPV-vaccinated. Furthermore, a pentavalent vaccine (Co/qFlu WPV) comprising of Co WPV and quadrivalent influenza vaccine (qFlu WPV) was immunogenic and protected animals from severe COVID-19. These results suggest that a single dose of the two-in-one WPV provides efficient protection against SARS-CoV-2 and influenza virus infections with no evidence of vaccine interference in mice. We propose that concomitant vaccination with the two-in-one WPV can be useful for controlling both diseases.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Mice , Humans , COVID-19 Vaccines , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Vaccination/methods , Virion , Immunogenicity, Vaccine
4.
EBioMedicine ; 99: 104950, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159532

ABSTRACT

BACKGROUND: Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. METHODS: We studied the therapeutic effects of monotherapy with the oral antiviral ensitrelvir or the anti-inflammatory corticosteroid methylprednisolone and combination therapy with ensitrelvir and methylprednisolone in a delayed dosing model of hamsters infected with SARS-CoV-2. FINDINGS: Combination therapy with ensitrelvir and methylprednisolone improved respiratory conditions and reduced the development of pneumonia in hamsters even when the treatment was started after 2 days post-infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulation of expression of genes involved in the inflammatory response. Furthermore, we found that the combination treatment is effective in case of infection with either the highly pathogenic delta or circulating omicron variants. INTERPRETATION: Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment from the perspective of lung pathology and host inflammatory responses. FUNDING: Funding bodies are described in the Acknowledgments section.


Subject(s)
COVID-19 , Humans , Animals , Cricetinae , COVID-19 Drug Treatment , Treatment Delay , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Adrenal Cortex Hormones , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
5.
Aging Cell ; 23(2): e14050, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38098255

ABSTRACT

Thrombosis is the major cause of death in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the pathology of vascular endothelial cells (ECs) has received much attention. Although there is evidence of the infection of ECs in human autopsy tissues, their detailed pathophysiology remains unclear due to the lack of animal model to study it. We used a mouse-adapted SARS-CoV-2 virus strain in young and mid-aged mice. Only mid-aged mice developed fatal pneumonia with thrombosis. Pulmonary ECs were isolated from these infected mice and RNA-Seq was performed. The pulmonary EC transcriptome revealed that significantly higher levels of viral genes were detected in ECs from mid-aged mice with upregulation of viral response genes such as DDX58 and IRF7. In addition, the thrombogenesis-related genes encoding PLAT, PF4, F3 PAI-1, and P-selectin were upregulated. In addition, the inflammation-related molecules such as CXCL2 and CXCL10 were upregulated in the mid-aged ECs upon viral infection. Our mouse model demonstrated that SARS-CoV-2 virus entry into aged vascular ECs upregulated thrombogenesis and inflammation-related genes and led to fatal pneumonia with thrombosis. Current results of EC transcriptome showed that EC uptake virus and become thrombogenic by activating neutrophils and platelets in the aged mice, suggesting age-associated EC response as a novel finding in human severe COVID-19.


Subject(s)
COVID-19 , Pneumonia , Thrombosis , Humans , Mice , Animals , Middle Aged , Aged , SARS-CoV-2 , Endothelial Cells , Lung/pathology , Inflammation/pathology , Pneumonia/pathology , Thrombosis/pathology
6.
Pathogens ; 12(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37887715

ABSTRACT

Rotavirus is a major cause of diarrhea globally in animals and young children under 5 years old. Here, molecular detection and genetic characterization of porcine rotavirus in smallholder and commercial pig farms in the Lusaka Province of Zambia were conducted. Screening of 148 stool samples by RT-PCR targeting the VP6 gene revealed a prevalence of 22.9% (34/148). Further testing of VP6-positive samples with VP7-specific primers produced 12 positives, which were then Sanger-sequenced. BLASTn of the VP7 positives showed sequence similarity to porcine and human rotavirus strains with identities ranging from 87.5% to 97.1%. By next-generation sequencing, the full-length genetic constellation of the representative strains RVA/pig-wt/ZMB/LSK0137 and RVA/pig-wt/ZMB/LSK0147 were determined. Genotyping of these strains revealed a known Wa-like genetic backbone, and their genetic constellations were G4-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1 and G9-P[13]-I5-R1-C1-M1-A8-N1-T1-E1-H1, respectively. Phylogenetic analysis revealed that these two viruses might have their ancestral origin from pigs, though some of their gene segments were related to human strains. The study shows evidence of reassortment and possible interspecies transmission between pigs and humans in Zambia. Therefore, the "One Health" surveillance approach for rotavirus A in animals and humans is recommended to inform the design of effective control measures.

7.
Sci Rep ; 13(1): 18165, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875565

ABSTRACT

Mosquitoes interact with various organisms in the environment, and female mosquitoes in particular serve as vectors that directly transmit a number of microorganisms to humans and animals by blood-sucking. Comprehensive analysis of mosquito-borne viruses has led to the understanding of the existence of diverse viral species and to the identification of zoonotic arboviruses responsible for significant outbreaks and epidemics. In the present study on mosquito-borne bunyaviruses we employed a broad-spectrum RT-PCR approach and identified eighteen different additional species in the Phenuiviridae family and also a number of related but unclassified bunyaviruses in mosquitoes collected in Zambia. The entire RNA genome segments of the newly identified viruses were further analyzed by RNA sequencing with a ribonuclease R (RNase R) treatment to reduce host-derived RNAs and enrich viral RNAs, taking advantage of the dsRNA panhandle structure of the bunyavirus genome. All three or four genome segments were identified in eight bunyavirus species. Furthermore, L segments of three different novel viruses related to the Leishbunyaviridae were found in mosquitoes together with genes from the suspected host, the Crithidia parasite. In summary, our virus detection approach using a combination of broad-spectrum RT-PCR and RNA sequencing analysis with a simple virus enrichment method allowed the discovery of novel bunyaviruses. The diversity of bunyaviruses is still expanding and studies on this will allow a better understanding of the ecology of hematophagous mosquitoes.


Subject(s)
Arboviruses , Culicidae , Orthobunyavirus , RNA Viruses , Animals , Humans , Female , Mosquito Vectors , Orthobunyavirus/genetics , RNA Viruses/genetics , Arboviruses/genetics
8.
Appl Microbiol Biotechnol ; 107(24): 7515-7529, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831184

ABSTRACT

The most conserved fusion loop (FL) domain present in the flavivirus envelope protein has been reported as a dominant epitope for cross-reactive antibodies to mosquito-borne flaviviruses (MBFVs). As a result, establishing accurate serodiagnosis for MBFV infections has been difficult as anti-FL antibodies are induced by both natural infection and following vaccination. In this study, we modified the most conserved FL domain to overcome this cross-reactivity. We showed that the FL domain of lineage I insect-specific flavivirus (ISFV) has differences in antigenicity from those of MBFVs and lineage II ISFV and determined the key amino acid residues (G106, L107, or F108), which contribute to the antigenic difference. These mutations were subsequently introduced into subviral particles (SVPs) of dengue virus type 2 (DENV2), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV). In indirect enzyme-linked immunosorbent assays (ELISAs), these SVP mutants when used as antigens reduced the binding of cross-reactive IgG and total Ig induced by infection of ZIKV, JEV, and WNV in mice and enabled the sensitive detection of virus-specific antibodies. Furthermore, immunization of ZIKV or JEV SVP mutants provoked the production of antibodies with lower cross-reactivity to heterologous MBFV antigens compared to immunization with the wild-type SVPs in mice. This study highlights the effectiveness of introducing mutations in the FL domain in MBFV SVPs with lineage I ISFV-derived amino acids to produce SVP antigens with low cross-reactivity and demonstrates an improvement in the accuracy of indirect ELISA-based serodiagnosis for MBFV infections. KEY POINTS: • The FL domain of Lineage I ISFV has a different antigenicity from that of MBFVs. • Mutated SVPs reduce the binding of cross-reactive antibodies in indirect ELISAs. • Inoculation of mutated SVPs induces antibodies with low cross-reactivity.


Subject(s)
Encephalitis Virus, Japanese , Flavivirus , West Nile virus , Zika Virus Infection , Zika Virus , Animals , Mice , Flavivirus/genetics , Zika Virus/genetics , Antibodies, Viral , West Nile virus/genetics , Encephalitis Virus, Japanese/genetics , Mutation , Cross Reactions
9.
Proc Natl Acad Sci U S A ; 120(42): e2304139120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37831739

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.


Subject(s)
Nucleosides , Positive-Strand RNA Viruses , Animals , Mice , Nucleosides/pharmacology , Antiviral Agents/pharmacology , SARS-CoV-2 , Virus Replication , RNA
10.
Vaccine ; 41(33): 4907-4917, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37400284

ABSTRACT

Live rabies vaccines have advantageous features that can facilitate mass vaccination for dogs, the most important reservoirs/transmitters of rabies. However, some live vaccine strains have problems in their safety, namely, risks from the residual pathogenicity and the pathogenic reversion of live vaccine strains. The reverse genetics system of rabies virus provides a feasible option to improve the safety of a live vaccine strain by, for example, artificially introducing attenuating mutations into multiple viral proteins. It was previously demonstrated in separate studies that introduction of amino acid residues Leu at position 333 in the viral glycoprotein (G333), Ser at G194, and Leu/His at positions 273/394 in the nucleoprotein (N273/394) enhance the safety of a live vaccine strain. In this study, to test our hypothesis that combinational introduction of these residues would significantly increase the safety level of a vaccine strain, we generated a novel live vaccine candidate, ERA-NG2, that is attenuated by mutations at N273/394 and G194/333, and we examined its safety and immunogenicity in mice and dogs. ERA-NG2 did not cause any clinical signs in mice after intracerebral inoculation. After 10 passages in suckling mouse brains, ERA-NG2 retained all of the introduced mutations except the mutation at N394 and the highly attenuated phenotype. These findings indicate that the ERA-NG2 is highly and stably attenuated. After confirming that ERA-NG2 induced a virus-neutralizing antibody (VNA) response and protective immunity in mice, we immunized dogs intramuscularly with a single dose (105-7 focus-forming units) of ERA-NG2 and found that, at all of the tested doses, the strain induced a VNA response in dogs without inducing any clinical signs. These findings demonstrate that ERA-NG2 has a high level of safety and a substantial level of immunogenicity in dogs and thus is a promising live vaccine candidate that can facilitate vaccination in dogs.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Animals , Dogs , Mice , Rabies/prevention & control , Rabies/veterinary , Viral Proteins/genetics , Mutation , Vaccines, Attenuated , Antibodies, Viral
11.
Viruses ; 15(6)2023 06 13.
Article in English | MEDLINE | ID: mdl-37376669

ABSTRACT

Bats are of significant interest as reservoirs for various zoonotic viruses with high diversity. During the past two decades, many herpesviruses have been identified in various bats worldwide by genetic approaches, whereas there have been few reports on the isolation of infectious herpesviruses. Herein, we report the prevalence of herpesvirus infection of bats captured in Zambia and genetic characterization of novel gammaherpesviruses isolated from striped leaf-nosed bats (Macronycteris vittatus). By our PCR screening, herpesvirus DNA polymerase (DPOL) genes were detected in 29.2% (7/24) of Egyptian fruit bats (Rousettus aegyptiacus), 78.1% (82/105) of Macronycteris vittatus, and one Sundevall's roundleaf bat (Hipposideros caffer) in Zambia. Phylogenetic analyses of the detected partial DPOL genes revealed that the Zambian bat herpesviruses were divided into seven betaherpesvirus groups and five gammaherpesvirus groups. Two infectious strains of a novel gammaherpesvirus, tentatively named Macronycteris gammaherpesvirus 1 (MaGHV1), were successfully isolated from Macronycteris vittatus bats, and their complete genomes were sequenced. The genome of MaGHV1 encoded 79 open reading frames, and phylogenic analyses of the DNA polymerase and glycoprotein B demonstrated that MaGHV1 formed an independent lineage sharing a common origin with other bat-derived gammaherpesviruses. Our findings provide new information regarding the genetic diversity of herpesviruses maintained in African bats.


Subject(s)
Chiroptera , Gammaherpesvirinae , Herpesviridae , Animals , Phylogeny , Zambia/epidemiology , Herpesviridae/genetics
12.
J Virol ; 97(5): e0043823, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37042780

ABSTRACT

Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host endosomal sorting complex required for transport (ESCRT) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection and, specifically, the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a small interfering RNA (siRNA) screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. IMPORTANCE Enveloped viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT complexes. Some enveloped viruses utilize their late (L-) domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped virions, but the underlying molecular mechanisms involved remain elusive. Here, we showed that TSG101, one of the ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via the L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Rabies virus , Rabies , Humans , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Morphogenesis , Rabies/metabolism , Rabies virus/genetics , Rabies virus/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/metabolism , Virus Release , Cell Line , Animals
13.
Bioorg Med Chem Lett ; 83: 129175, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36758821

ABSTRACT

Bunyaviruses, including the Lassa virus (LASV), are known to cause hemorrhagic fever and have a high fatality rate among hospitalized patients, as there are few effective treatments. We focused on the fact that bunyaviruses use cap-dependent endonuclease (CEN) for viral replication, which is similar to influenza viruses. This led us to screen carbamoyl pyridone bicycle (CAB) compounds, which compose a series of baloxavir acid (BXA) derivatives, against lymphocytic choriomeningitis virus (LCMV) and Junin virus (JUNV) among the bunyaviruses. This led to the discovery of 1c, which has potent anti-bunyaviral activities. In SAR studies, we found that a large lipophilic side chain is preferred for the 1-position of the CAB scaffold, similar to the influenza CEN inhibitor, and that a small alkyl group for the 3-position shows high activity. Moreover, the 7­carboxyl group of the scaffold is essential for anti-bunyaviral activities, and the antiviral activity is reduced by conversion to various carboxylic acid bioisosteres. The SAR results are discussed using a binding model of 9d in the active center of the known LCMV CEN crystal structure. These compounds show promise as broad-spectrum anti-bunyavirus therapeutics, given their relatively favorable metabolic stability and PK profiles.


Subject(s)
Influenza, Human , Orthomyxoviridae , Humans , Structure-Activity Relationship , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Endonucleases/metabolism
14.
J Virol ; 97(1): e0145522, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36633410

ABSTRACT

Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission.


Subject(s)
Chiroptera , Murinae , Rotavirus Infections , Rotavirus , Animals , Chiroptera/virology , Diarrhea/veterinary , Diarrhea/virology , Genome, Viral , Genotype , Kenya , Phylogeny , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus Infections/veterinary , Murinae/virology
15.
Arch Virol ; 168(2): 61, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36631547

ABSTRACT

Although rabies is endemic in Malawi, there have been no studies in which rabies virus was systematically investigated and characterized in multiple animal hosts in that country. In order to provide molecular epidemiological data on rabies virus in Malawi, 683 suspected rabies case reports from 2008 to 2021 were examined, and 46 (dog = 40, cow = 5, and cat = 1) viable rabies-positive brain samples archived at the Central Veterinary Laboratory (CVL), Lilongwe, Malawi, were analyzed genetically. The results showed an increase in the submission of brain samples from 2008 to 2010, with the highest number of submissions observed in 2020. Of the 683 case reports analyzed for the period under review, 38.1% (260/683) (CI: 34.44 - 41.84) were confirmed by direct fluorescent antibody test. Among the confirmed cases, 65.4% (170/260) (CI: 59.23 - 71.09) were canine rabies. Further, phylogenetic analysis revealed that sequences from different animal hosts clustered together within the Africa 1b lineage, suggesting that the strains circulating in livestock are similar to those in domestic dogs. This finding supports the hypothesis that canine rabies is spilling over to livestock and emphasizes the need for further studies to provide data for effective control of rabies in Malawi.


Subject(s)
Dog Diseases , Rabies virus , Rabies , Female , Cattle , Animals , Dogs , Rabies virus/genetics , Rabies/epidemiology , Rabies/veterinary , Phylogeny , Malawi/epidemiology , Molecular Epidemiology , Dog Diseases/epidemiology , Livestock
16.
Sci Transl Med ; 15(679): eabq4064, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36327352

ABSTRACT

In parallel with vaccination, oral antiviral agents are highly anticipated to act as countermeasures for the treatment of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oral antiviral medication demands not only high antiviral activity but also target specificity, favorable oral bioavailability, and high metabolic stability. Although a large number of compounds have been identified as potential inhibitors of SARS-CoV-2 infection in vitro, few have proven to be effective in vivo. Here, we show that oral administration of S-217622 (ensitrelvir), an inhibitor of SARS-CoV-2 main protease (Mpro; also known as 3C-like protease), decreases viral load and ameliorates disease severity in SARS-CoV-2-infected hamsters. S-217622 inhibited viral proliferation at low nanomolar to submicromolar concentrations in cells. Oral administration of S-217622 demonstrated favorable pharmacokinetic properties and accelerated recovery from acute SARS-CoV-2 infection in hamster recipients. Moreover, S-217622 exerted antiviral activity against SARS-CoV-2 variants of concern, including the highly pathogenic Delta variant and the recently emerged Omicron BA.5 and BA.2.75 variants. Overall, our study provides evidence that S-217622, an antiviral agent that is under evaluation in a phase 3 clinical trial (clinical trial registration no. jRCT2031210350), has remarkable antiviral potency and efficacy against SARS-CoV-2 and is a prospective oral therapeutic option for COVID-19.


Subject(s)
COVID-19 , Humans , Cricetinae , SARS-CoV-2 , Viral Load , Prospective Studies , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/metabolism
17.
J Med Chem ; 65(20): 13852-13865, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36229406

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 3C-like protease (3CLpro) is a promising target for COVID-19 treatment. Here, we report a new class of covalent inhibitors of 3CLpro that possess chlorofluoroacetamide (CFA) as a cysteine-reactive warhead. Based on an aza-peptide scaffold, we synthesized a series of CFA derivatives in enantiopure form and evaluated their biochemical efficiency. The data revealed that 8a (YH-6) with the R configuration at the CFA unit strongly blocks SARS-CoV-2 replication in infected cells, and its potency is comparable to that of nirmatrelvir. X-ray structural analysis showed that YH-6 formed a covalent bond with Cys145 at the catalytic center of 3CLpro. The strong antiviral activity and favorable pharmacokinetic properties of YH-6 suggest its potential as a lead compound for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Cysteine , Cysteine Endopeptidases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Peptides/chemistry
18.
iScience ; 25(11): 105314, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36246574

ABSTRACT

One of the bottlenecks in the application of basic research findings to patients is the enormous cost, time, and effort required for high-throughput screening of potential drugs for given therapeutic targets. Here we have developed LIGHTHOUSE, a graph-based deep learning approach for discovery of the hidden principles underlying the association of small-molecule compounds with target proteins. Without any 3D structural information for proteins or chemicals, LIGHTHOUSE estimates protein-compound scores that incorporate known evolutionary relations and available experimental data. It identified therapeutics for cancer, lifestyle related disease, and bacterial infection. Moreover, LIGHTHOUSE predicted ethoxzolamide as a therapeutic for coronavirus disease 2019 (COVID-19), and this agent was indeed effective against alpha, beta, gamma, and delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that are rampant worldwide. We envision that LIGHTHOUSE will help accelerate drug discovery and fill the gap between bench side and bedside.

19.
J Nat Prod ; 85(11): 2583-2591, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36223390

ABSTRACT

Dihydromaniwamycin E (1), a new maniwamycin derivative featuring an azoxy moiety, has been isolated from the culture extract of thermotolerant Streptomyces sp. JA74 along with the known analogue maniwamycin E (2). Compound 1 is produced only by cultivation of strain JA74 at 45 °C, and this type of compound has been previously designated a "heat shock metabolite (HSM)" by our research group. Compound 2 is detected as a production-enhanced metabolite at high temperature. Structures of 1 and 2 are elucidated by NMR and MS spectroscopic analyses. The absolute structure of 1 is determined after the total synthesis of four stereoisomers. Though the absolute structure of 2 has been proposed to be the same as the structure of maniwamycin D, the NMR and the optical rotation value of 2 are in agreement with those of maniwamycin E. Therefore, this study proposes a structural revision of maniwamycins D and E. Compounds 1 and 2 show inhibitory activity against the influenza (H1N1) virus infection of MDCK cells, demonstrating IC50 values of 25.7 and 63.2 µM, respectively. Notably, 1 and 2 display antiviral activity against SARS-CoV-2, the causative agent of COVID-19, when used to infect 293TA and VeroE6T cells, with 1 and 2 showing IC50 values (for infection of 293TA cells) of 19.7 and 9.7 µM, respectively. The two compounds do not exhibit cytotoxicity in these cell lines at those IC50 concentrations.


Subject(s)
Antiviral Agents , Azo Compounds , COVID-19 , Influenza A Virus, H1N1 Subtype , SARS-CoV-2 , Streptomyces , Humans , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Azo Compounds/chemistry , Azo Compounds/metabolism , Azo Compounds/pharmacology , Heat-Shock Response , HEK293 Cells , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/drug therapy , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/drug therapy , SARS-CoV-2/drug effects , Streptomyces/chemistry , Streptomyces/metabolism , Vero Cells , Chlorocebus aethiops , Dogs
20.
Bioconjug Chem ; 33(10): 1852-1859, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36194183

ABSTRACT

In precision medicine, extracellular vesicles (EVs) are promising intracellular drug delivery vehicles. The development of a quantitative analysis approach will provide valuable information from the perspective of cell biology and system design for drug delivery. Previous studies have reported quantitative methods to analyze the relative uptake or fusion of EVs to recipient cells. However, relatively few methods have enabled the simultaneous evaluation of the "number" of EVs taken up by recipient cells and those that fuse with cellular membranes. In this study, we report a simple quantitative method based on the NanoBiT system to quantify the uptake and fusion of small and large EVs (sEVs and lEVs, respectively). We assessed the abundance of these two subtypes of EVs and determined that lEVs may be more effective vehicles for transporting cargo to recipient cells. The results also indicated that both sEVs and lEVs have very low fusogenic activity, which can be improved in the presence of a fusogenic protein.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Biological Transport , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...