Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Cells ; 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29984875

ABSTRACT

Fabp7 gene encodes a brain-specific fatty acid-binding protein that is widely used as a marker for neural stem cells. Here, we report that the activity of rat Fabp7 promoter was regulated directly by a transcription factor, Pax6. Deletion analyses identified an essential region (-837 to -64 from transcription start site) in the rat Fabp7 promoter. This region controls promoter activity in rat embryos and in the mouse cultured cell line MEB5. Over-expressing wild-type Pax6 or a dominant-negative Pax6 mutant enhanced and suppressed, respectively, the promoter activity. Pax6 can bind the region directly, although the region contains no clear binding motif for Pax6. The rat Fabp7 promoter also contains conserved binding sites for Pbx/POU (-384 to -377) and CBF1 (-270 to -262). However, specific deletion of the sites showed no significant reduction in the promoter activity, although a gel mobility shift assay confirmed that CBF1 binds the conserved sequence. Taken together, these results suggest that the rat Fabp7 promoter is mainly regulated by Pax6. The Pax6-dependent regulation of the rat Fabp7 expression might have an evolutionary aspect between rat and mouse; the former may need to efficiently use fatty acids to make the brain bigger than the latter.

2.
BMC Dev Biol ; 10: 6, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20082710

ABSTRACT

BACKGROUND: The transcription factor Pax6 is essential for the development of the central nervous system and it exerts its multiple functions by regulating the expression of downstream target molecules. To screen for genes downstream of Pax6, we performed comprehensive transcriptome profiling analyses in the early hindbrain of Pax6 homozygous mutant and wild-type rats using microarrays. RESULTS: Comparison of quadruplicate microarray experiments using two computational methods allowed us to identify differentially expressed genes that have relatively small fold changes or low expression levels. Gene ontology analyses of the differentially expressed molecules demonstrated that Pax6 is involved in various signal transduction pathways where it regulates the expression of many receptors, signaling molecules, transporters and transcription factors. The up- or down-regulation of these genes was further confirmed by quantitative RT-PCR. In situ staining of Fabp7, Dbx1, Unc5h1 and Cyp26b1 mRNAs showed that expression of these transcripts not only overlapped with that of Pax6 in the hindbrain of wild-type and Pax6 heterozygous mutants, but also was clearly reduced in the hindbrain of the Pax6 homozygous mutant. In addition, the Pax6 homozygous mutant hindbrain showed that Cyp26b1 expression was lacked in the dorsal and ventrolateral regions of rhombomeres 5 and 6, and that the size of rhombomere 5 expanded rostrocaudally. CONCLUSIONS: These results indicate that Unc5h1 and Cyp26b1 are novel candidates for target genes transactivated by Pax6. Furthermore, our results suggest the interesting possibility that Pax6 regulates anterior-posterior patterning of the hindbrain via activation of Cyp26b1, an enzyme that metabolizes retinoic acid.


Subject(s)
Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Paired Box Transcription Factors/metabolism , Repressor Proteins/metabolism , Rhombencephalon/embryology , Transcriptional Activation , Animals , Cytochrome P-450 Enzyme System/genetics , Gene Expression Profiling , Netrin Receptors , Oligonucleotide Array Sequence Analysis , PAX6 Transcription Factor , Rats , Receptors, Cell Surface/genetics , Retinoic Acid 4-Hydroxylase
SELECTION OF CITATIONS
SEARCH DETAIL
...