Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Oral Biosci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942193

ABSTRACT

OBJECTIVES: This study aimed to elucidate whether the administration of parathyroid hormone (PTH) results in remodeling- or modeling-based bone formation in different regions of the murine femora, and whether the PTH-driven bone formation would facilitate osteoblastic differentiation into osteocytes. METHODS: Six-week-old male C57BL/6J mice were employed to examine the distribution of alkaline phosphatase (ALP), PHOSPHO1, podoplanin, and calcein labeling in two distinct long bone regions: the metaphyseal trabeculae close to the chondro-osseous junction (COJ) and those distant from the COJ in three mouse groups, a control group receiving a vehicle (Sham group) and groups receiving hPTH (1-34) twice a day (PTH BID group) or four times a day (PTH QID group) for two weeks. RESULTS: The Sham group showed PHOSPHO1-reactive mature osteoblasts localized primarily at the COJ, whereas the PTH BID/QID groups exhibited extended lines of PHOSPHO1-reactive osteoblasts even in regions distant from the COJ. The PTH QID group displayed fragmented calcein labeling in trabeculae close to the COJ, whereas continuous labeling was observed in trabeculae distant from the COJ. Osteoblasts tended to express podoplanin and PHOSPHO1 independently in the close and distant regions of the Sham group, while osteoblasts in the PTH-administered groups showed immunoreactivity of podoplanin and PHOSPHO1 together in the close and distant regions. CONCLUSIONS: Administration of PTH may accelerate remodeling-based bone formation in regions close to the COJ while predominantly inducing modeling-based bone formation in distant regions. PTH appeared to simultaneously facilitate osteoblastic bone mineralization and differentiation into osteocytes in both remodeling- and modeling-based bone formation.

2.
Gerontology ; 69(11): 1295-1306, 2023.
Article in English | MEDLINE | ID: mdl-37769633

ABSTRACT

INTRODUCTION: Aging, an inevitable physiological process, leads to morphological and histological degenerative changes in the mandibular condylar cartilage (MCC); however, the molecular mechanism has not yet been elucidated, and little information is available on age-related factors. Therefore, this study was designed to identify age-related factors by investigating the age-related differentially expressed genes (DEGs) and localization of their translated protein expression in the mandibular condyle. METHODS: Mandibular condyles were collected from 10- and 50-week-old mice. Total RNA was extracted from the samples and then analyzed using cap analysis of gene expression (CAGE) to identify age-related DEGs. Gene ontology (GO) enrichment analysis was performed to determine which biological processes were most affected by aging in terms of gene expression using Metascape. The mandibular condyle samples were processed for histology to investigate morphological changes caused by aging and for immunohistochemistry to localize the protein expression encoded by age-related genes identified with CAGE. Semi-quantitative immunohistochemistry was performed to assess age-related extracellular matrix (ECM) protein levels in the MCC. The histological sections were also used for Alcian blue histochemistry to detect glycosaminoglycans (GAGs). RESULTS: GO enrichment analysis revealed that the genes related to "extracellular matrix organization," including Acan, Col1a1, Col1a2, Col2a1, Mmp3, Mmp9, and Mmp13, were most differentially expressed in the aged mandibular condyle. Among these seven genes, Mmp3 was upregulated, and the others were downregulated with aging. Histological examination showed the age-related morphological and histological changes in the MCC. Immunohistochemical investigation showed the localization of matrix metalloproteinases (MMPs)-3, -9, and -13 and their substrate proteins, aggrecan, type I collagen, and type II collagen, in the mandibular condyle at 10 and 50 weeks, indicating different localizations between the young and the aged. In the aged MCC, semi-quantitative immunohistochemistry showed a significant decrease in the aggrecan protein level, and Alcian blue histochemistry showed a decrease in GAGs. CONCLUSION: MMP-3, MMP-9, and MMP-13 contribute to the remodeling of the ECM of the MCC and subchondral bone during aging by degrading ECM proteins at specific times and sites under the regulation of their production and secretion.


Subject(s)
Mandibular Condyle , Matrix Metalloproteinase 3 , Mice , Animals , Matrix Metalloproteinase 3/metabolism , Mandibular Condyle/metabolism , Mandibular Condyle/pathology , Immunohistochemistry , Aggrecans/metabolism , Alcian Blue/metabolism , Gene Expression
3.
Biomed Res ; 44(4): 173-179, 2023.
Article in English | MEDLINE | ID: mdl-37544738

ABSTRACT

Matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS) is used to comprehensively visualize the spatial distribution of numerous biomolecules. The present study was designed to investigate the distribution of phospholipids in developing rat teeth by IMS to identify the characteristic phospholipid molecules for tooth development, and to evaluate the suitability of tissue preparation methods. Rats at postnatal day 3 were euthanized, and the resected head specimens were either fixed or not fixed with 4% paraformaldehyde (PFA), and decalcified or not decalcified in 10% ethylenediaminetetraacetic acid (EDTA) before being frozen. Subsequently, sections were prepared and mounted on glass slides coated with indium tin oxide, and analyzed by IMS. The mass spectra showed the highest peaks around m/z 706, 732, and 734 in the region of interest. Characteristic localization of signals in the tooth buds was seen around m/z 706 and 732, and a database search indicated that the corresponding molecules were phosphatidylcholines. The signals were localized to the dental papillae and enamel epithelia in the tooth buds. The PFA-fixed specimens with or without EDTA decalcification showed preserved IMS signals, while the non-fixed specimens showed fewer signals. Thus, PFA fixation with EDTA decalcification appears to be suitable for IMS analysis of calcified tissues.


Subject(s)
Lasers , Phospholipids , Rats , Animals , Edetic Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
4.
Biomed Res ; 44(2): 65-72, 2023.
Article in English | MEDLINE | ID: mdl-37005284

ABSTRACT

Mice devoid of matrix metalloproteinase (MMP)-2 due to gene targeting have been reported to show articular cartilage destruction in the knee joint; however, the phenotype of the mandibular condylar cartilage remains unknown. Thus, in the present study, we investigated the mandibular condyle in Mmp2-/- mice. We obtained and bred Mmp2-/- mice from the same source as the previous study, and performed genotyping using genomic DNA extracted from finger snips. The mandibular condyle of Mmp2-/- mice and wild-type (WT) mice was immunohistochemically examined for the localization of extracellular matrix (ECM) proteins (type I and II collagen, and aggrecan), and MMP-9 and MMP-13. No cartilage destruction was observed in the mandibular condyle of Mmp2-/- mice, and no difference was found in the localization of the ECM proteins between the Mmp2-/- mice and WT mice. However, the bone marrow cavity in the subchondral bone of the mandibular condyle was more distinct in Mmp2-/- mice than in WT mice at the age of 50 weeks. Of note, MMP-9 characteristically localized in multinucleated cells in the mandibular condyle in 50-week-old Mmp2-/- mice. MMP-2 may be involved in the regulation of osteoclast differentiation and the formation of the bone marrow cavity in aged mice.


Subject(s)
Cartilage, Articular , Matrix Metalloproteinase 2 , Mice , Animals , Aggrecans/genetics , Aggrecans/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Chondrocytes/metabolism , Mandibular Condyle/metabolism , Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Cartilage, Articular/physiology , Collagen Type II/metabolism
5.
J Oral Biosci ; 65(2): 175-185, 2023 06.
Article in English | MEDLINE | ID: mdl-37088151

ABSTRACT

OBJECTIVES: We examined mice with gene deletion of Receptor activator of nuclear factor-κB (Rank) ligand (Rankl) to histologically clarify whether they contained progenitor cells committed to osteoclastic differentiation up to the stage requiring RANK/RANKL signaling. METHODS: The tibiae and femora of ten-week-old male wild-type, c-fos-/-, and Rankl-/- mice were used for immunohistochemistry and transmission electron microscopy (TEM). RESULTS: In Rankl-/- mice, we observed osteoclast-like giant cells, albeit in low numbers, with single or two nuclei, engulfing the mineralized extracellular matrix. TEM revealed that these giant cells contained large numbers of mitochondria, vesicles/vacuoles, and clear zone-like structures but no ruffled borders. They often engulfed fragmented bony/cartilaginous components of the extracellular matrix that had been degraded. Additionally, osteoclast-like giant cells exhibited immunoreactivity for vacuolar H+-ATPase, galectin-3, and siglec-15 but not for tartrate-resistant acid phosphatase, cathepsin K, or MMP-9, all of which are classical hallmarks of osteoclasts. Furthermore, osteoclast-like giant cells were ephrinB2-positive as they were near EphB4-positive osteoblasts that are also positive for alkaline phosphatase and Runx2 in Rankl-/- mice. Unlike Rankl-/- mice, c-fos-/- mice lacking osteoclast progenitors and mature osteoclasts had no ephrinB2-positive osteoclast-like cells or alkaline phosphatase-positive/Runx2-reactive osteoblasts. This suggests that similar to authentic osteoclasts, osteoclast-like giant cells might have the potential to activate osteoblasts in Rankl-/- mice. CONCLUSIONS: It seems plausible that osteoclast-like giant cells may have acquired some osteoclastic traits and the ability to resorb mineralized matrices even when the absence of RANK/RANKL signaling halted the osteoclastic differentiation cascade.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteoclasts , Mice , Male , Animals , Osteoclasts/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Alkaline Phosphatase/metabolism , Osteoblasts/metabolism , Carrier Proteins/metabolism , Giant Cells/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism , Immunoglobulins/metabolism , Membrane Proteins
6.
J Oral Biosci ; 65(2): 163-174, 2023 06.
Article in English | MEDLINE | ID: mdl-37088152

ABSTRACT

OBJECTIVE: Toll-like receptor 2 (TLR2), recognizes a wide variety of pathogen-associated molecular patterns such as lipopolysaccharides, peptidoglycans, and lipopeptides, and is generally believed to be present in monocytes, macrophages, dendritic cells, and vascular endothelial cells. However, no histological examination of osteoclasts, which differentiate from precursors common to macrophages/monocytes, has been performed in a non-infected state of TLR2 deficiency. The objective of this study was to examine the histological properties and function of osteoclasts in the long bones of 8-week-old male TLR2 deficient (TLR2-/-) mice to gain insight into TLR2 function in biological circumstances without microbial infection. METHODS: Eight-week-old male wild-type and TLR2-/- mice were fixed with paraformaldehyde solution, and their tibiae and femora were used for micro-CT analysis, immunohistochemistry, transmission electron microscopy, and real-time PCR analysis. RESULTS: TLR2-/- tibiae and femora exhibited increased bone volume of metaphyseal trabeculae and elevated numbers of TRAP-positive osteoclasts. However, the number of multinucleated TRAP-positive osteoclasts was reduced, whereas mononuclear TRAP-positive cells increased, despite the high expression levels of Dc-Stamp and Oc-Stamp. Although TRAP-positive multinucleated and mononuclear osteoclasts showed the immunoreactivity and elevated expression of RANK and siglec-15, they revealed weak cathepsin K-positivity and less incorporation of the mineralized bone matrix, and often missing ruffled borders. It seemed likely that, despite the increased numbers, TLR2-/- osteoclasts reduced cell fusion and bone resorption activity. CONCLUSION: It seems likely that even without bacterial infection, TLR2 might participate in cell fusion and subsequent bone resorption of osteoclasts.


Subject(s)
Bone Resorption , Osteoclasts , Mice , Male , Animals , Osteoclasts/metabolism , Osteoclasts/pathology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Cell Differentiation , Bone Resorption/genetics , Bone Resorption/metabolism , Bone Resorption/pathology , Immunoglobulins/metabolism , Membrane Proteins
7.
J Oral Biosci ; 64(4): 461-464, 2022 12.
Article in English | MEDLINE | ID: mdl-36087855

ABSTRACT

OBJECTIVE: To determine whether the combination of scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and immunostaining would visualize the mineral and protein distribution in the same histological sections. METHODS: Paraffin sections of fixed rat hindlimbs were processed for SEM-EDX and subsequently for immunofluorescence staining. RESULTS: The localization of calcium, phosphorus, and carbon with type II collagen could be visualized in the same region of calcified growth plate cartilage on the same section. CONCLUSIONS: The combination of SEM-EDX and immunostaining is effective for visualizing mineral and protein distribution in the same histological sections.


Subject(s)
Growth Plate , Minerals , Rats , Animals , Growth Plate/metabolism , Cartilage/metabolism , Phosphorus , Calcium/metabolism
8.
J Periodontal Res ; 57(4): 733-741, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35502585

ABSTRACT

OBJECTIVE: The present study was designed to investigate the whole transcriptome of periodontal tissues of both young and aged mice to identify the characteristic up-regulation of protease genes with aging and to localize their translated protein products in the periodontal tissues. BACKGROUND: The metzincin protease superfamily is composed of matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs. Up-regulation of these extracellular matrix-degrading proteases has been implicated in senescence of tissues and organs, including the skin. However, few studies have investigated the expression profiles of these proteases and potential involvement in aging of periodontal tissues. METHODS: Periodontal tissues with the surrounding mandibular bones were collected from 50- and 10-week-old mice. Total RNA was extracted from the periodontal tissue and analyzed by cap analysis of gene expression (CAGE) to identify differentially expressed genes encoding the metzincin proteases. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the CAGE results, and the phenotypic expression of proteases involved in aging was localized via immunohistochemical analysis. RESULTS: The CAGE results showed that the expression levels of MMP-3, -10, and -12 were up-regulated at 50 weeks. Subsequent qRT-PCR analysis showed that the gene expression levels of MMP-3 and -10 were significantly increased with age. MMP-10 immunoreactivity was localized exclusively in the cementum and alveolar bone adjacent to the periodontal ligament and was stronger and broader in aged mice than young mice. MMP-3 immunoreactivity was localized in the periodontal ligaments at both 10 and 50 weeks. CONCLUSION: In the present study, we demonstrated that the expression of MMP-3 and -10 increased with aging and identified their characteristic localizations in aged periodontal tissues.


Subject(s)
Aging , Matrix Metalloproteinase 10 , Matrix Metalloproteinase 3 , Periodontal Ligament , Animals , Dental Cementum , Disintegrins , Extracellular Matrix , Matrix Metalloproteinase 10/genetics , Matrix Metalloproteinase 3/genetics , Mice , Periodontal Ligament/metabolism
9.
Anat Sci Int ; 97(2): 213-220, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34859366

ABSTRACT

Meckel's cartilage is essential for the normal development of the mandible. The fate of the intermediate portion of Meckel's cartilage is unique as most of it disappears soon after birth except for the part that forms the sphenomandibular ligament. The mechanism of the disappearance of Meckel's cartilage is unknown; therefore, this study was designed to investigate the process of Meckel's cartilage degradation, focusing on cartilage matrix calcification and the appearance of chondroclasts. Developing mouse mandibles at embryonic days 15, 16, 17, and 18, and postnatal day 2 were processed for whole-mount staining with alcian blue and alizarin red. The mandibles on embryonic days 15, 16, 17, and 18 were fixed and embedded in paraffin. Adjacent sections were processed for von Kossa and tartrate-resistant acid phosphatase (TRAP) histochemistry and scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM/EDS). Calcification and the element concentrations of calcium, phosphorus, and carbon were examined with von Kossa histochemistry and SEM/EDS. The involvement of chondroclasts was investigated using TRAP histochemistry. The results demonstrated that the intermediate portion of Meckel's cartilage is resorbed by chondroclasts after chondrocyte hypertrophy and cartilage matrix calcification and that the mineral concentration of calcified Meckel's cartilage is comparable to that of the surrounding bone. This study contributes to the understanding of the mechanism of Meckel's cartilage resorption and provides useful insights into the development of the mandible.


Subject(s)
Cartilage , Mandible , Animals , Immunohistochemistry , Mice , Microscopy, Electron, Scanning , Spectrum Analysis , Tartrate-Resistant Acid Phosphatase , X-Rays
10.
J Oral Biosci ; 63(4): 401-407, 2021 12.
Article in English | MEDLINE | ID: mdl-34699964

ABSTRACT

OBJECTIVE: Three-dimensional (3-D) images of osteoclasts in vivo have been elusive, due to their large size and intricate morphology. The present study was designed to reconstruct the 3-D morphology of whole osteoclasts in developing mouse mandibles using scanning electron microscopy (SEM) array tomography. METHODS: Mandibles of 16 days post coitum mouse embryos were fixed and embedded in epoxy resin after decalcification. Epoxy blocks were trimmed, and serial sections of 1 µm in thickness were cut with an ultramicrotome and mounted on glass microscope slides. Consecutive images of every fourth or fifth serial section were obtained by SEM after electron staining and platinum coating. Three dimensional reconstruction of osteoclasts was performed using these consecutive images. RESULTS: Multinucleated osteoclasts were observed to cluster around developing bone in the embryonic mouse mandible. The outlines of osteoclasts and their sealing zones were identified in the serial sections. The reconstructed 3-D image revealed whole osteoclast morphology with the sealing zone. Osteoclasts were adherent to bone with the anchoring structure between the osteoclast and the bone. CONCLUSIONS: SEM array tomography with our modification revealed 3-D imagery of a whole osteoclast and its sealing zone in vivo for the first time. This methodology could provide useful information on in vivo structures and dynamics of large cells, such as osteoclasts.


Subject(s)
Imaging, Three-Dimensional , Osteoclasts , Animals , Electron Microscope Tomography , Mandible/diagnostic imaging , Mice , Microscopy, Electron, Scanning
11.
Sci Rep ; 11(1): 9522, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947923

ABSTRACT

We cryopreserved mouse tooth germs with widely open cervical margins of the enamel organ to overcome difficulties in cryoprotectant permeation and tested their efficacy by transplanting them into recipient mice. The upper right first molar germs of 8-day-old donor mice were extracted and categorized into the following four groups according to cryopreservation time: no cryopreservation, 1 week, 1 month, and 3 months. The donor tooth germs were transplanted into the upper right first molar germ sockets of the 8-day-old recipient mice. The upper left first molars of the recipient mice were used as controls. The outcome of the transplantation was assessed at 1, 2, and 3 weeks after transplantation. Stereomicroscopic evaluation revealed that most of the transplanted teeth erupted by 3 weeks after transplantation. Micro-computed tomography analysis revealed root elongation in the transplanted groups as well as in the controls. There was no significant difference between the cryopreserved and non-cryopreserved transplanted teeth, but the roots of the cryopreserved teeth were significantly shorter than those of the control teeth. Histological examination revealed root and periodontal ligament formations in all the transplanted groups. These results suggest that the transplantation of cryopreserved tooth germs facilitates subsequent root elongation and tooth eruption.


Subject(s)
Molar/growth & development , Tooth Eruption/physiology , Tooth Germ/growth & development , Tooth Germ/surgery , Tooth Root/growth & development , Alveolar Process/growth & development , Animals , Cryopreservation/methods , Enamel Organ/growth & development , Maxilla/growth & development , Mice , Mice, Inbred C57BL , Periodontal Ligament/growth & development , Periodontium/growth & development , Regeneration/physiology , Tooth Abnormalities/surgery , Tooth Socket/growth & development , X-Ray Microtomography/methods
12.
Biomed Res ; 42(1): 13-21, 2021.
Article in English | MEDLINE | ID: mdl-33563875

ABSTRACT

The present study was designed to test the hypothesis that osteoclasts appear after or at the same time as the initiation of bone mineralization in developing intramembranous bones. We examined mineral deposition via Von Kossa staining to determine when bone mineralization begins, tartrate-resistant acid phosphatase (TRAP) activity and cathepsin K immunoreactivity to identify the presence of osteoclasts, and their mRNA expression levels to assess osteoclastic differentiation in the embryonic mouse mandible. Cathepsin K-immunopositive cells were detected around the same time as the onset of bone mineralization, whereas TRAP-positive cells appeared prior to bone mineralization. Cathepsin K protein was expressed only in multinucleated osteoclasts, whereas TRAP activity was identified in both mono- and multinucleated cells. During bone development, TRAP-positive cells altered their morphology, which was related to the number of their nuclei. The elevated mRNA levels of TRAP and cathepsin K were consistent with the increased percentage of multinucleated osteoclasts and the progression of bone development. Our study revealed that TRAP-positive cells appear prior to bone mineralization, and TRAP- and cathepsin K-positive multinucleated osteoclasts appear at the same time as the initiation of bone mineralization in embryonic mouse mandibles, suggesting that osteoclasts contribute to bone matrix maturation during intramembranous ossification.


Subject(s)
Cathepsin K/metabolism , Gene Expression Regulation , Mandible/embryology , Mandible/growth & development , Osteoclasts/cytology , Tartrate-Resistant Acid Phosphatase/metabolism , Animals , Bone Development , Bone Resorption/metabolism , Calcification, Physiologic , Cell Differentiation , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Osteogenesis
13.
J Oral Biosci ; 61(3): 149-156, 2019 09.
Article in English | MEDLINE | ID: mdl-31400543

ABSTRACT

BACKGROUND: Bone, dentin, and enamel are tissues formed through calcification, a process involving deposition of calcium phosphate minerals on extracellular organic matrices. Calcification, the underlying mechanism of which is unknown, is initiated with mineral deposition followed by advancing of the deposit and subsequent maturation of the mineral crystal. HIGHLIGHT: We have reviewed the current knowledge of how calcification proceeds during bone development, bone healing, and enamel and dentin development, based on reported studies. Previous studies reported by us and by other authors have suggested that degradation of some extracellular matrix (ECM) proteins is involved in calcification during bone and dentin development and bone healing in a manner similar to that previously reported for enamel development. CONCLUSION: The ECM proteins may inhibit mineral deposition and calcification, similar to the role of amelogenin during enamel development. The candidates for the amelogenin equivalents in bone and dentin have not been identified. Further studies are required to elucidate the regulatory mechanisms of bone and dentin calcification in light of specific ECM proteins that prevent calcification and enzymes that degrade these ECM proteins.


Subject(s)
Tooth , Amelogenin , Dentin , Extracellular Matrix , Tooth Calcification
14.
Sci Rep ; 8(1): 17154, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464184

ABSTRACT

Piezosurgery is an innovative technique widely used for osteotomies in the field of oral and maxillofacial surgery. The surgical technique has been clinically supposed to cut mineralized bone selectively with reducing the risk of damage to adjacent soft tissues. However, none of the previous literature has reported any evidence of scientific experiments to examine performance of the piezoelectric device, i.e. the time required for cutting bone and the effect on soft tissues under the standardized conditions. This study was designed to test the hypothesis that cutting time of the piezoelectric device is longer than that of rotary instruments while the cut surface of bone is smoother and soft tissues are less damaged with piezosurgery under the standardized experimental system. We measured the time for cutting bone and soft tissues of rats with the piezoelectric device and rotary instruments. Damage to soft tissues was examined histologically, and the cut surface of bone was investigated using scanning electron microscopy. Our study demonstrated experimentally that piezosurgery provides a smooth cut bony surface with no damage to soft tissues and takes longer time to cut bone than conventional drillings. We propose that piezosurgery is beneficial for medical safety and usability.


Subject(s)
Osteotomy/methods , Piezosurgery/methods , Surgical Instruments , Animals , Models, Animal , Rats , Time
15.
Biomed Res ; 38(5): 277-284, 2017.
Article in English | MEDLINE | ID: mdl-29070777

ABSTRACT

The study was designed to investigate calcification in developing rat mandibular bone using whole mount staining, micro-computed tomography (micro-CT) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). Wistar rats at embryonic days 16, 18, and 20 and postnatal weeks 1 and 6 were used. Rats were fixed with 4% paraformaldehyde and heads were resected, frozen and sectioned for histology, then analysed with SEM-EDX. Some of the specimens were observed with micro-CT. Other rats were fixed and stained with alcian blue and alizarin red for whole mount staining. Histology and whole mount staining showed that osteoid was deposited around Meckel's cartilage at day 15 and developed into bone at day 16. Accumulation of Ca and P was identified in the bone matrix with SEM-EDX. The area of bone expanded until week 6. The Ca/P ratio increased, whereas the C/Ca and C/P ratios decreased during development. Micro-CT demonstrated an increase in radio-opacity with bone development. The results suggest that rat mandibular bone formation is initiated around Meckel's cartilage at day 15. Deposition and maturation of the calcium phosphate mineral increase gradually with decrease in the organic component as the rat mandible develops.


Subject(s)
Calcification, Physiologic , Mandible/diagnostic imaging , Mandible/embryology , Organogenesis , Osteogenesis , Animals , Biomarkers , Immunohistochemistry , Mandible/ultrastructure , Microscopy, Electron, Scanning , Rats , Spectrometry, X-Ray Emission , X-Ray Microtomography
16.
J Bone Miner Metab ; 34(1): 41-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25773047

ABSTRACT

Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.


Subject(s)
Bone Matrix/embryology , Bone Matrix/metabolism , Durapatite/metabolism , Skull/embryology , Animals , Calcification, Physiologic/physiology , Male , Microscopy, Electron, Scanning , Rats , Skull/metabolism , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
17.
J Oral Biosci ; 58(4): 173-179, 2016 Nov.
Article in English | MEDLINE | ID: mdl-32512686

ABSTRACT

OBJECTIVE: The study was designed to investigate the concentrations of calcium (Ca), phosphorus (P), and carbon (C) during developmental calcification of dentin and enamel in rat incisors. METHODS: Mandibular incisors from eight 2-week-old male Wistar rats were analyzed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). We analyzed data on the elements in the course of developmental processes in dentin and enamel and along the vertical line of the matrix between odontoblasts and ameloblasts. RESULTS: The dentin concentrations of Ca and P and the Ca/P ratio were the lowest, while the C concentration was the highest in initial dentin. The Ca and P concentrations were the lowest, whereas the C concentration was the highest in predentin along the vertical line; the Ca/P ratio did not show any differences. The concentrations of Ca and P increased, while the C concentration decreased during early maturation and more so in late maturation in developing enamel, while the Ca/P ratio increased during late maturation. The Ca and P concentrations and the Ca/P ratio were the highest, while the C concentration was the lowest in enamel adjacent to the junction with dentin on the vertical line. CONCLUSIONS: During tooth development, the initial dentin matrix may possess distinctive mineral characteristics as compared with other parts of dentin and predentin. Elemental composition of the mineral in enamel may change during late maturation. Our results are suggestive of degradation of organic components during developmental calcification in dentin and enamel.

18.
Anat Rec (Hoboken) ; 296(8): 1255-63, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23775928

ABSTRACT

Occlusal forces may induce the physiological teeth migration in humans, but there is little direct evidence. Rat molars are known to migrate distally during aging, possibly caused by occlusal forces. The purpose of this study was to determine if a reduction in occlusion would decrease teeth migration and affect associated periodontal structures such as cementum. To reduce occlusal forces, the right upper first molar (M1) in juvenile rats was extracted. The transition of the position of upper second molar (M2) and formation of M2 cementum was followed during aging. From the cephalometric analyses, upper M2 was located more anterior compared with the original position with aging after M1 extraction. Associated with this "slowing-down" of the physiological drift, cementum thickness on distal surface, but not on mesial surface, of M2 root was significantly increased. The accumulation of alizarin red as vital stain indicative of calcification, was observed in the distal cementum of M2 root only on the side of M1 extraction. Extraction of M1 that results in less functional loading, distinctly attenuates the physiological drift only in the upper dentition. The decreased physiological drift appears to activate acellular cementum formation only on distal surface of M2 root, perhaps due to reduced mechanical stress associated with the attenuated distal drift. In conclusion, the physiological distal drift in rat molars appears to be largely driven by the occlusal force and also affects the formation of acellular cementum. These findings provide additional direct evidence for an important role of occlusal forces in tooth migration.


Subject(s)
Bite Force , Dental Cementum/physiology , Molar/physiology , Tooth Migration/physiopathology , Tooth Root/physiology , Aging/physiology , Animals , Dental Occlusion , Male , Models, Animal , Rats , Rats, Wistar , Stress, Mechanical , Tooth Extraction
19.
J Electron Microsc (Tokyo) ; 60(6): 393-400, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22082507

ABSTRACT

We investigated bone repair in sensory-denervated rats, compared with controls, to elucidate the involvement of sensory neurons. Nine-week-old male Wistar rats received subcutaneous injections of capsaicin to denervate sensory neurons. Rats treated with the same amount of vehicle served as controls. A standardized bone defect was created on the parietal bone. We measured the amount of repaired bone with quantitative radiographic analysis and the mRNA expressions of osteocalcin and cathepsin K with real-time polymerase chain reaction (PCR). Quantitative radiographic analysis showed that the standard deviations and coefficients of variation for the amount of repaired bone were much higher in the capsaicin-treated group than in the control group at any time point, which means that larger individual differences in the amount of repaired bone were found in capsaicin-treated rats than controls. Furthermore, radiographs showed radiolucency in pre-existing bone surrounding the standardized defect only in the capsaicin-treated group, and histological observation demonstrated some multinuclear cells corresponding to the radiolucent area. Real-time PCR indicated that there was no significant difference in the mRNA expression levels of osteocalcin and cathepsin K between the control group and the capsaicin-treated group. These results suggest that capsaicin-induced sensory denervation affects the bone defect repair.


Subject(s)
Bone Regeneration , Parietal Bone/drug effects , Parietal Bone/injuries , Sensory Receptor Cells/drug effects , Animals , Biomarkers , Capsaicin/administration & dosage , Cathepsin K/genetics , Cathepsin K/metabolism , Gene Expression Regulation , Injections, Subcutaneous , Male , Osteocalcin/genetics , Osteocalcin/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , Parietal Bone/diagnostic imaging , Parietal Bone/pathology , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , RNA, Messenger/metabolism , Radiography , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Sensory Receptor Cells/pathology
20.
J Electron Microsc (Tokyo) ; 60(5): 345-52, 2011.
Article in English | MEDLINE | ID: mdl-21917848

ABSTRACT

An organ culture system to model the physiological calcification process was designed using rat embryonic calvaria as a device for analyzing its mechanism. Standardized calvarial explants were dissected from rat embryos aged 18 and 20 days (E18 and E20) and cultured for 1, 3 and 5 days. The calcium content of the cultured explants was quantified by atomic absorption spectrophotometry. Equivalent explants were fixed, embedded in paraffin, sectioned and stained with von Kossa stain combined with hematoxylin-eosin or processed for energy-dispersive X-ray spectroscopy to determine the concentrations of calcium, phosphorus and carbon in the tissue. The total calcium content increased significantly in E18 and E20 cultured calvaria (E18cc and E20cc) over 5 days of culture. All cultured calvaria were von Kossa-positive, whereas the staining was intensified, and sound osteoblasts and osteocytes were observed in the bone matrix only in E18cc during the 5-day culture period. Concentrations of calcium and carbon increased significantly in E18cc over 5 days, whereas E20 showed little increase. Physiological calcification proceeded in E18cc, but not in E20cc. These results indicate that the organ culture system using E18 calvaria is useful for modeling the physiological calcification process in vitro.


Subject(s)
Calcification, Physiologic , Models, Biological , Skull/embryology , Animals , Calcium/metabolism , Carbon/metabolism , Organ Culture Techniques , Osteoblasts/cytology , Osteocytes/cytology , Osteogenesis , Phosphorus/metabolism , Rats , Skull/cytology , Skull/metabolism , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...