Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int ; 257: 329-336, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26461031

ABSTRACT

A novel type of spectrum, the one-dimensional power spectrum (1D-PS), was designed for the discrimination of adhesive packing tapes, i.e., kraft tapes. The 1D-PS offered complementary information to that provided by the improved two-dimensional PS (2D-PS), which was calculated using our previously established image processes combined with a two-dimensional fast Fourier transform (2D-FFT) to obtain information about the spatial periodicity within kraft tapes. The 1D-PS was calculated using a three-step image process: (i) the 2D-FFT was applied to 50 randomly selected areas in a transmitted light image; (ii) the obtained 2D-PSs were accumulated without applying a logarithmic transform; (iii) the wavenumber and the maximum intensity were plotted on the x-axis and y-axis, respectively. Through an intra-roll comparison, the 1D-PSs collected from single rolls showed similar profiles. In an inter-roll comparison, the 1D-PSs from 50 commercially available brand-name products were classified into 29 groups. The 1D-PSs contained other useful information than that provided by the improved 2D-PSs: they presented more peaks and absolute intensity with a wider range. The 1D-PSs enabled us to compare the spectra quickly and easily, owing to their unchanging profiles regardless of the orientation of the scanned images. A combined use of the 1D-PSs with the improved 2D-PSs-both spectrum types being convenient, rapid, non-destructive, and applicable to dirty and/or damaged samples-could further improve the identification of kraft tapes.

2.
Forensic Sci Int ; 220(1-3): 59-66, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22341568

ABSTRACT

This study focused on two-dimensional fast Fourier transform (2D-FFT) as a new technique for the discrimination of kraft tapes, which is a kind of adhesive packing tape. The 2D power spectrum (2D-PS) obtained by applying 2D-FFT to an image enables us to obtain information about the spatial periodicity, even if the periodicity is invisible within the image. However, in the case of kraft tape, peaks in the 2D-PS are too unclear to determine its periodicity. We developed novel analytical image processes combined with 2D-FFT. 2D-FFT was applied to 50 randomly selected areas in a transmitted light image of kraft tape. The 2D-PSs were calculated from each area without applying a logarithmic transformation, accumulated, and processed by the removal of the area surrounding the center, and finally normalized for visualization. These processes enhanced the peaks and eliminated local variations. Through an intra-roll comparison, the 2D-PSs collected from a roll were similar in the location of the peaks and in their patterns at low frequency area. Using an inter-roll comparison, the 2D-PSs from 50 commercially available brand-name products were classified into 26 groups based on these peaks and patterns. All results demonstrate that this method, which is convenient, rapid, and non-destructive, could be a valuable tool for the identification of kraft tapes.

3.
J Colloid Interface Sci ; 291(2): 471-6, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-15953612

ABSTRACT

Changes in the molecular state of benzoic acid (BA) in the presence of folded sheet mesoporous material (FSM-16), which has uniformly sized cylindrical mesopores and a large surface area, were assessed with several analyses. When BA was blended with FSM-16 for 5 min (BA content=30%), the X-ray diffraction peaks of BA crystals disappeared, suggesting an amorphous state. Fluorescence analysis of the mixture showed a new fluorescence emission peak for BA at 386 nm after mixing with FSM-16. Fluorescence lifetime analysis of the BA component in the mixture at 386 nm showed a longer lifetime in comparison with that of BA crystals. The solid-state (13)C CP/MAS and PST/MAS NMR spectra of the mixture with FSM-16 showed a significantly different spectral pattern from the mixture with nonporous glass, whose NMR spectra were identical to those of BA crystals. These results indicate that BA molecules disperse quickly into the hexagonal channels of FSM-16 by a simple blending procedure and adsorbed BA molecules had clearly different physicochemical properties to BA crystals.


Subject(s)
Benzoic Acid/chemistry , Phase Transition , Silicon Dioxide/chemistry , Adsorption , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...