Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Vopr Virusol ; 65(6): 364-372, 2021 Jan 07.
Article in Russian | MEDLINE | ID: mdl-33533232

ABSTRACT

INTRODUCTION: Rotavirus A is one of the leading causes of acute gastroenteritis in children in the first years of life. Rotavirus infection is currently classified as a preventable infection. The most abundant rotavirion protein is VP6. MATERIAL AND METHODS: Phylogenetic analysis and calculation of phylodynamic characteristics were carried out for 262 nucleotide sequences of the VP6 gene of rotavirus species A, isolated in Russia, using the BEAST v.1.10.4 software package. The derivation and analysis of amino acid sequences was performed using the MEGAX program. RESULTS: This study provides phylodynamic characteristics of the rotaviruses in Russia based on the sequences coding VP6 protein. Bayesian analysis showed the circulation of rotaviruses of three sublineages of genotype I1 and three sublineages of genotype I2 in Russia. The level of accumulation of mutations was established, which turned out to be similar for genotypes I1 and I2 and amounted to 7.732E-4 and 1.008E-3 nucleotides/site/year, respectively. The effective population sizes based on nucleotide sequences of the VP6 I1 and I2 genotypes are relatively stable while after the 2000s there is a tendency of its decreasing. Comparative analysis of the amino acid sequences in the region of the intracellular neutralization sites A (231-260 aa) and B (265-292 aa) made it possible to reveal a mutation in position V252I in a proportion of Russian strains of genotype I1 some strains of genotypes I1 and I2 had mutation I281V. These substitutions were not associated with any sublineages to which the strains belong. The analysis of three T-cell epitopes revealed four amino acid differences (in aa positions 305, 315, 342, 348) that were associated with the first or second genogroup. CONCLUSION: Based on the phylodynamic characteristics and amino acid composition of antigenic determinants, it was concluded that the VP6 protein is highly stable and could potentially be a good model for development of a rotavirus vaccine.


Subject(s)
Antigens, Viral/genetics , Capsid Proteins/genetics , Gastroenteritis/virology , Rotavirus Infections/drug therapy , Rotavirus/genetics , Antigens, Viral/isolation & purification , Bayes Theorem , Capsid Proteins/isolation & purification , Child , Gastroenteritis/epidemiology , Gastroenteritis/genetics , Genotype , Humans , Infant , Molecular Epidemiology , Phylogeny , Rotavirus/classification , Rotavirus/isolation & purification , Rotavirus Infections/genetics , Rotavirus Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL