Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Trace Elem Med Biol ; 80: 127284, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37657266

ABSTRACT

BACKGROUND: Lead impairs female reproductive health because it can induce oxidative stress. Zinc as an antioxidant produces an enzyme system that helps neutralize free radicals. α-Tocopherol has an antagonistic effect that reduces oxidative stress. This study aimed to demonstrate the effects of zinc (Zn) and α-tocopherol on the ovarian endogenous antioxidants and antral follicles of albino rats (Rattus norvegicus) exposed to lead acetate (Pb(C2H3O2)2). METHODS: Twenty-five female Wistar rats were divided into five groups, namely groups K (control), P0, P1, P2, and P3. Following exposure and treatment for 21 days with different combinations, the albino rats were necropsied, and their ovaries were removed for subsequent histopathological preparations and endogenous antioxidant analysis. Observations were made on the ovary, including an antral follicle count and diameter calculations. Analysis of the superoxide dismutase (SOD) levels (560 nm wavelength) and malondialdehyde MDA-TBA (532 nm wavelength) were performed by a spectrophotometer. The data were analyzed using a one-way ANOVA and least significant difference (LSD) test with the SPSS V24 software. RESULTS: The highest SOD enzyme expression in the albino rat ovaries was in P0 (17.23 ± 5.34), and the lowest was in P3 (4.21 ± 0.76). The lowest MDA level was observed in the control group (K) and P3 compared to the other groups. The highest average antral follicle count and diameter were found in the albino rats exposed to 1.5 mg/kg BW lead acetate, and treated with 0.54 mg/kg BW zinc sulfate and 100 mg/kg BW α-tocopherol (group P3) compared to the other groups. The mechanisms of action of zinc and α-tocopherol work synergistically to decrease free radicals and ovarian damage. CONCLUSION: The results showed that a combination of 0.54 mg/kg BW zinc (Zn) and 100 mg/kg BW α-tocopherol can maintain the number and diameter of the antral follicles and reduce ovarian SOD expression and MDA levels in albino rats exposed to lead acetate.


Subject(s)
Antioxidants , alpha-Tocopherol , Rats , Female , Animals , Antioxidants/metabolism , alpha-Tocopherol/pharmacology , Lead/toxicity , Zinc/pharmacology , Rats, Wistar , Oxidative Stress , Superoxide Dismutase/metabolism , Free Radicals/pharmacology , Acetates/pharmacology
2.
Open Vet J ; 13(7): 873-878, 2023 07.
Article in English | MEDLINE | ID: mdl-37614725

ABSTRACT

Background: Dimethoate (DM) is one of the most important organophosphate insecticides used for controlling many pests which affect vegetables, fruits, and agricultural crops, its persistence in soils and crops could cause a health hazard to humans as well as other non-target organisms. Aim: This study was conducted to evaluate the effect of the recommended dose and its double of DM on sex hormones, sperm morphology, and fertility of adult male mice. Methods: Twenty-seven Swiss albino adult male mice were divided into three groups of nine animals each: control group received distilled water only, while other groups received DM orally at doses (0.1 and 0.2 ml DM/100 ml distilled water) for 20 days, at the end of the treatment, six mice from each group were sacrificed. The sperm morphology was evaluated and sex hormones were measured. Three mice from each group were allowed to mate with untreated females (1:2). Result: The results revealed a decrease in luteinizing hormone levels in mice treated with (0.2 ml DM/100 ml distilled water) compared with the control group while the levels of follicle-stimulating hormone and testosterone did not record any significant differences. Also, the results demonstrated a significant increase in abnormal sperm morphology such as head and tail. The fertility was reduced and the average number of dead embryos increased while the average number of live embryos decreased. Conclusion: This current study confirmed that DM has detrimental effects on sperm morphology, fertility, and the embryos; therefore, more efforts should be exerted to protect ourselves and our environment from the harmful effects of this pesticide.


Subject(s)
Infertility , Female , Humans , Male , Animals , Mice , Dimethoate , Semen , Infertility/veterinary , Spermatozoa , Water
3.
Open Vet J ; 12(2): 165-170, 2022.
Article in English | MEDLINE | ID: mdl-35603062

ABSTRACT

Background: Dimethoate (DM) is one of the most organophosphorus pesticides used all over the world to control insect pests, the extensive use of this insecticide causes a health hazard to animals and humans. Aim: This study was conducted to evaluate the positive effect of green tea extract on sperm quality and testicular cytoarchitecture in male mice treated with DM and on its reproductive performance. Methods: Mice were divided into three groups, each group contained nine mice, the first group (control) was given distilled water only, the second group received DM at a dose (0.1 ml DM/100 ml distilled water) while the third group was given DM at a dose (0.1 ml DM/ 100 ml distilled water) and the green tea extract at a dose (100 mg/kg). After 20 days of the treatment, six mice from each group were killed, sperm quality (sperm count, morphology motility) and histopathological lesions of testis were evaluated. Results: The results showed that DM significantly affected sperm quality a decrease in sperm motility and an increase in abnormal sperm morphology and caused marked alterations in the microstructures of testicular tissues. When treated males were mated with untreated females, a decline in the number of live embryos was found, while the green tea extract revealed an effective role by reducing those negative influences. Conclusion: This study revealed that DM has detrimental effects on sperm quality, testicular tissues, and the embryos, while treatment with green tea revealed a positive role in improving those negative influences of DM without causing any harmful side effects.


Subject(s)
Dimethoate , Pesticides , Animals , Antioxidants/pharmacology , Dimethoate/toxicity , Female , Male , Mice , Organophosphorus Compounds/pharmacology , Pesticides/pharmacology , Plant Extracts/pharmacology , Sperm Motility , Tea/chemistry , Water/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...