Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gynecol Oncol ; 143(1): 143-151, 2016 10.
Article in English | MEDLINE | ID: mdl-27444036

ABSTRACT

OBJECTIVE: Homologous recombination (HR) proficient ovarian cancers, including CCNE1 (cyclin E)-amplified tumors, are resistant to poly (ADP-ribose) polymerase inhibitors (PARPi). Histone deacetylase inhibitors (HDACi) are effective in overcoming tumor resistance to DNA damaging drugs. Our goal was to determine whether panobinostat, a newly FDA-approved HDACi, can sensitize cyclin E, HR-proficient ovarian cancer cells to the PARPi olaparib. METHODS: Expression levels of CCNE1 (cyclin E), BRCA1, RAD51 and E2F1 in ovarian tumors and cell lines were extracted from The Cancer Genome Atlas (TCGA) and Broad-Novartis Cancer Cell Line Encyclopedia (CCLE). In HR-proficient ovarian cancer cell line models (OVCAR-3, OVCAR-4, SKOV-3, and UWB1.289+BRCA1 wild-type), cell growth and viability were assessed by sulforhodamine B and xenograft assays. DNA damage and repair (pH2AX and RAD51 co-localization and DRGFP reporter activity) and apoptosis (cleaved PARP and cleaved caspase-3) were assessed by immunofluorescence and Western blot assays. RESULTS: TCGA and CCLE data revealed positive correlations (Spearman) between cyclin E E2F1, and E2F1 gene targets related to DNA repair (BRCA1 and RAD51). Panobinostat downregulated cyclin E and HR repair pathway genes, and reduced HR efficiency in cyclin E-amplified OVCAR-3 cells. Further, panobinostat synergized with olaparib in reducing cell growth and viability in HR-proficient cells. Similar co-operative effects were observed in xenografts, and on pharmacodynamic markers of HR repair, DNA damage and apoptosis. CONCLUSIONS: These results provide preclinical rationale for using HDACi to reduce HR in cyclin E-overexpressing and other types of HR-proficient ovarian cancer as a means of enhancing PARPi activity.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclin E/analysis , Homologous Recombination , Hydroxamic Acids/therapeutic use , Indoles/therapeutic use , Oncogene Proteins/analysis , Ovarian Neoplasms/drug therapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , DNA Repair , Drug Synergism , Female , Humans , Ovarian Neoplasms/chemistry , Ovarian Neoplasms/genetics , Panobinostat
2.
Mol Cancer ; 14: 192, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26552746

ABSTRACT

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy, with limited treatment options for chemoresistant disease. An important link between inflammation and peritoneal spread of ovarian cancer is NF-κB signaling. Thymoquinone (TQ) exerts multiple anti-tumorigenic cellular effects, including NF-κB inhibition. We aimed to investigate the therapeutic potential of TQ in an established murine syngeneic model of ovarian cancer. METHODS: ID8-NGL mouse ovarian cancer cells stably expressing an NF-κB reporter transgene were injected intra-peritoneally into C57BL/6 mice, and mice were treated with TQ or vehicle for 10 or 30 days. TQ was combined with the macrophage depleting drug, liposomal clodronate, in selected experiments. Effects on peritoneal tumor burden were measured by volume of ascites, number of peritoneal implants and mesenteric tumor mass. NF-κB reporter activity and markers of proliferation and apoptosis were measured in tumors and in confirmatory in vitro experiments. Protein or mRNA expression of M1 (anti-tumor) and M2 (pro-tumor) macrophage markers, and soluble cytokine profiles, were examined from harvested ascites fluid, peritoneal lavages and/or tumor sections. 2-tailed Mann-Whitney tests were used for measuring differences between groups in in vivo experiments. RESULTS: Consistent with its effects in vitro, TQ reduced proliferation and increased apoptosis in ID8-NGL tumors after 10 and 30 day treatment. Prolonged TQ treatment did not significantly alter tumor number or mass compared to vehicle, but rather exerted an overall deleterious effect by stimulating ascites formation. Increased ascites was accompanied by elevated NF-κB activity in tumors and macrophages, increased pro-tumor M2 macrophages and expression of pro-tumorigenic soluble factors such as VEGF in ascites fluid, and increased tumor infiltration of M2 macrophages. In contrast, a 10 day exposure to TQ produced no ascites, and reduced tumor NF-κB activity, M2 macrophages and soluble VEGF levels. Peritoneal macrophage depletion by clodronate significantly reduced tumor burden. However, TQ-stimulated ascites was further enhanced by co-treatment with clodronate, with macrophages present overwhelmingly of the M2 phenotype. CONCLUSIONS: Our findings show that pro-tumorigenic microenvironmental effects limited the efficacy of TQ in a syngeneic mouse model of ovarian cancer, and provide caution regarding its potential use in clinical trials in ovarian cancer patients.


Subject(s)
Antinematodal Agents/therapeutic use , Benzoquinones/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Clodronic Acid/therapeutic use , Disease Models, Animal , Female , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism
3.
J Ovarian Res ; 8: 46, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26215403

ABSTRACT

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy characterized by the frequent development of resistance to platinum chemotherapy. Finding new drug combinations to overcome platinum resistance is a key clinical challenge. Thymoquinone (TQ) is a component of black seed oil that exerts multiple anti-tumorigenic effects on cells, including inhibition of NF-κB and promotion of DNA damage. We aimed to determine whether TQ enhances cisplatin cytotoxicity in cultured ovarian cancer cells and in an established murine syngeneic model of ovarian cancer. METHODS: Ovarian cancer cell viability in vitro was measured by sulforhodamine B (SRB) assays, and drug interactions tested for synergism by isobologram analysis. ID8-NGL mouse ovarian cancer cells stably expressing an NF-κB reporter transgene were injected intra-peritoneally into C57BL/6 mice. After 30 day TQ and/or cisplatin treatment, we measured the following indices: tumor burden (ascites volume, number of peritoneal implants and mesenteric tumor mass); NF-κB reporter activity (luciferase assay); protein expression of the double-strand DNA break marker, pH2AX(ser139), the proliferation markers, Ki67/mib-1 and PCNA, and the apoptosis markers, cleaved caspase-3, cleaved PARP and Bax; and mRNA expression of NF-κB targets, TNF-α and IL-1ß. Two-tailed Mann-Whitney tests were used for measuring differences between groups in mouse experiments. RESULTS: In SRB assays, TQ and cisplatin synergized in ID8-NGL cells. In mice, cisplatin significantly reduced cell proliferation and increased apoptosis in tumors, resulting in decreased overall tumor burden. Combining TQ with cisplatin further decreased these indices, indicating co-operative effects between the drugs. TQ treatment promoted cisplatin-induced pH2AX expression in cultured cells and in tumors. While NF-κB inhibition by TQ induced anti-tumor effects in vitro, we made the unexpected observation that TQ alone increased both tumor NF-κB activity and formation of ascites in vivo. CONCLUSIONS: TQ enhanced cisplatin-mediated cytoxicity in ovarian cancer cells in vitro and in a mouse syngeneic model, effects associated with increased DNA damage. However, our results strongly caution that TQ treatment alone may have an overall deleterious effect in the immunocompetent host through stimulation of ascites. Since TQ is a potential candidate for future clinical trials in ovarian cancer patients, this finding has considerable potential relevance to the clinic.


Subject(s)
Benzoquinones/administration & dosage , Cell Proliferation/drug effects , Cisplatin/administration & dosage , Ovarian Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Caspase 3/genetics , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , NF-kappa B/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Tumor Necrosis Factor-alpha/genetics
4.
Oncotarget ; 6(25): 21353-68, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-25972361

ABSTRACT

Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors.


Subject(s)
Cyclooxygenase 1/metabolism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasms, Glandular and Epithelial/enzymology , Ovarian Neoplasms/enzymology , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Cell Movement , Cell Proliferation , Computational Biology , Female , Genome, Human , Humans , Immunohistochemistry , Neoplasm Invasiveness , Neovascularization, Pathologic , Oligonucleotide Array Sequence Analysis , Signal Transduction
5.
Gynecol Oncol ; 133(3): 599-606, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24631446

ABSTRACT

OBJECTIVES: Approximately 50% of serous epithelial ovarian cancers (EOC) contain molecular defects in homologous recombination (HR) DNA repair pathways. Poly(ADP-ribose) polymerase inhibitors (PARPi) have efficacy in HR-deficient, but not in HR-proficient, EOC tumors as a single agent. Our goal was to determine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize HR-proficient ovarian cancer cells to the PARPi AZD-2281 (olaparib). METHODS: Ovarian cancer cell lines (SKOV-3, OVCAR-8, NCI/ADR-Res, UWB1.289 BRCA1null and UWB1.289+BRCA1 wild-type) were treated with saline vehicle, olaparib, SAHA or olaparib/SAHA. Sulforhodamine B (SRB) assessed cytotoxicity and immunofluorescence and Western blot assays assessed markers of apoptosis (cleaved PARP) and DNA damage (pH2AX and RAD51). Drug effects were also tested in SKOV-3 xenografts in Nude mice. Affymetrix microarray experiments were performed in vehicle and SAHA-treated SKOV-3 cells. RESULTS: In a microarray analysis, SAHA induced coordinated down-regulation of HR pathway genes, including RAD51 and BRCA1. Nuclear co-expression of RAD51 and pH2AX, a marker of efficient HR repair, was reduced approximately 40% by SAHA treatment alone and combined with olaparib. SAHA combined with olaparib induced apoptosis and pH2AX expression to a greater extent than either drug alone. Olaparib reduced cell viability at increasing concentrations and SAHA enhanced these effects in 4 of 5 cell lines, including BRCA1 null and wild-type cells, in vitro and in SKOV-3 xenografts in vivo. CONCLUSIONS: These results provide preclinical rationale for targeting DNA damage response pathways by combining small molecule PARPi with HDACi as a mechanism for reducing HR efficiency in ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Phthalazines/pharmacology , Piperazines/pharmacology , Recombinational DNA Repair/drug effects , Animals , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage/drug effects , DNA, Neoplasm/drug effects , Down-Regulation , Drug Resistance, Neoplasm , Drug Synergism , Female , Humans , Mice , Mice, Nude , Tissue Array Analysis , Vorinostat , Xenograft Model Antitumor Assays
6.
J Ovarian Res ; 6(1): 63, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24020521

ABSTRACT

BACKGROUND: Nuclear factor-kappa B (NF-kappaB) signaling is an important link between inflammation and peritoneal carcinomatosis in human ovarian cancer. Our objective was to track NF-kappaB signaling during ovarian cancer progression in a syngeneic mouse model using tumor cells stably expressing an NF-kappaB reporter. METHODS: ID8 mouse ovarian cancer cells stably expressing an NF-kappaB-dependent GFP/luciferase (NGL) fusion reporter transgene (ID8-NGL) were generated, and injected intra-peritoneally into C57BL/6 mice. NGL reporter activity in tumors was non-invasively monitored by bioluminescence imaging and measured in luciferase assays in harvested tumors. Ascites fluid or peritoneal lavages were analyzed for inflammatory cell and macrophage content, and for mRNA expression of M1 and M2 macrophage markers by quantitative real-time RT-PCR. 2-tailed Mann-Whitney tests were used for measuring differences between groups in in vivo experiments. RESULTS: In ID8-NGL cells, responsiveness of the reporter to NF-kappaB activators and inhibitors was confirmed in vitro and in vivo. ID8-NGL tumors in C57BL/6 mice bore histopathological resemblance to human high-grade serous ovarian cancer and exhibited similar peritoneal disease spread. Tumor NF-kappaB activity, measured by the NGL reporter and by western blot of nuclear p65 expression, was markedly elevated at late stages of ovarian cancer progression. In ascites fluid, macrophages were the predominant inflammatory cell population. There were elevated levels of the M2-like pro-tumor macrophage marker, mannose-receptor, during tumor progression, and reduced levels following NF-kappaB inhibition with thymoquinone. CONCLUSIONS: Our ID8-NGL reporter syngeneic model is suitable for investigating changes in tumor NF-kappaB activity during ovarian cancer progression, how NF-kappaB activity influences immune cells in the tumor microenvironment, and effects of NF-kappaB-targeted treatments in future studies.

7.
Cancer Res ; 73(15): 4758-69, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23720056

ABSTRACT

In metastatic ovarian cancer, resistance to platinum chemotherapy is common. Although the orphan nuclear receptor TR3 (nur77/NR4A1) is implicated in mediating chemotherapy-induced apoptosis in cancer cells, its role in ovarian cancer has not been determined. In an ovarian cancer tissue microarray, TR3 protein expression was elevated in stage I tumors, but downregulated in a significant subset of metastatic tumors. Moreover, TR3 expression was significantly lower in platinum-resistant tumors in patients with metastatic disease, and low TR3 staining was associated with poorer overall and progression-free survival. We have identified a direct role for TR3 in cisplatin-induced apoptosis in ovarian cancer cells. Nucleus-to-cytoplasm translocation of TR3 was observed in cisplatin-sensitive (OVCAR8, OVCAR3, and A2780PAR) but not cisplatin-resistant (NCI/ADR-RES and A2780CP20) ovarian cancer cells. Immunofluorescent analyses showed clear overlap between TR3 and mitochondrial Hsp60 in cisplatin-treated cells, which was associated with cytochrome c release. Ovarian cancer cells with stable shRNA- or transient siRNA-mediated TR3 downregulation displayed substantial reduction in cisplatin effects on apoptotic markers and cell growth in vitro and in vivo. Mechanistic studies showed that the cisplatin-induced cytoplasmic TR3 translocation required for apoptosis induction was regulated by JNK activation and inhibition of Akt. Finally, cisplatin resistance was partially overcome by ectopic TR3 overexpression and by treatment with the JNK activator anisomycin and Akt pathway inhibitor, wortmannin. Our results suggest that disruption of TR3 activity, via downregulation or nuclear sequestration, likely contributes to platinum resistance in ovarian cancer. Moreover, we have described a treatment strategy aimed at overcoming platinum resistance by targeting TR3.


Subject(s)
Drug Resistance, Neoplasm/physiology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Ovarian Neoplasms/metabolism , Signal Transduction/physiology , Animals , Antineoplastic Agents/therapeutic use , Blotting, Western , Cell Line, Tumor , Down-Regulation , Female , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Immunohistochemistry , Mice , Mice, Nude , Middle Aged , Platinum Compounds/therapeutic use , Protein Transport , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tissue Array Analysis , Xenograft Model Antitumor Assays
8.
Gynecol Oncol ; 127(3): 579-86, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23010348

ABSTRACT

OBJECTIVE: Romidepsin (FK228) was recently approved by the FDA for the treatment of cutaneous and peripheral T cell lymphoma. We have shown in vitro efficacy of FK228 in ovarian cancer. Here, our goal was to evaluate FK228 combined with cisplatin in ovarian cancer in vitro and in vivo. METHODS: Ovarian cancer cell lines were treated with cisplatin, FK228 or the combination of drugs. Colorimetric assays were used to determine cytotoxicity in vitro. Mice engrafted with 5×10(6) SKOV-3 ovarian cancer cells were treated with cisplatin, FK228 or the combination, and tumor weights and volumes were measured. We assessed molecular markers of proliferation (mib-1), apoptosis (cleaved PARP and cleaved caspase 3) and DNA damage (pH2AX, RAD51 and 53BP1). RESULTS: FK228 enhanced the cytotoxic effects of cisplatin in ovarian cells compared to vehicle-treated controls or each drug alone. The combination of FK228 and cisplatin-induced apoptosis and activated aberrant DNA damage responses demonstrated by increased expression of pH2AX, RAD51 and 53BP1. Mice treated with FK228, cisplatin and both drugs showed reduced tumor weights and volumes. Drug-treated tumors showed decreased mib-1 and increased cleaved-caspase 3 expression levels. The number and intensity of pH2AX stained cells was greatest in tumors exposed to the combination of FK228 and cisplatin. CONCLUSION: FK228 causes DNA damage-induced apoptosis and enhances the anti-tumor effects of cisplatin. The DNA damage mark pH2AX is activated by FK228 and cisplatin and may be a useful pharmacodynamic mark of these effects.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , DNA Damage/drug effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Cell Line, Tumor , Cisplatin/pharmacology , Depsipeptides/pharmacology , Female , Humans , Ovarian Neoplasms/genetics
9.
Brain Res ; 1349: 143-52, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20599829

ABSTRACT

Vitamin C (ascorbic acid, AA) depletion during prenatal and postnatal development can lead to oxidative stress in the developing brain and other organs. Such damage may lead to irreversible effects on later brain function. We studied the relationship between AA deficiency and oxidative stress during development in gulonolactone oxidase (gulo) knockout mice that are unable to synthesize their own ascorbic acid. Heterozygous gulo(+/-) mice can synthesize AA and typically have similar tissue levels to wild-type mice. Gulo(+/-) dams were mated with gulo(+/-) males to provide offspring of each possible genotype. Overall, embryonic day 20 (E20) and postnatal day 1 (P1) pups were protected against oxidative stress by sufficient AA transfer during pregnancy. On postnatal day 10 (P10) AA levels were dramatically lower in liver and cerebellum in gulo(-/-) mice and malondialdehyde (MDA) levels were significantly increased. In postnatal day 18 pups (P18) AA levels decreased further in gulo(-/-) mice and oxidative stress was observed in the accompanying elevations in MDA in liver, and F(2)-isoprostanes in cortex. Further, total glutathione levels were higher in gulo(-/-) mice in cortex, cerebellum and liver, indicating that a compensatory antioxidant system was activated. These data show a direct relationship between AA level and oxidative stress in the gulo(-/-) mice. They reinforce the critical role of ascorbic acid in preventing oxidative stress in the developing brain in animals that, like humans, cannot synthesize their own AA.


Subject(s)
Ascorbic Acid/metabolism , Brain , Gene Expression Regulation, Developmental/genetics , L-Gulonolactone Oxidase/deficiency , Liver , Oxidative Stress/genetics , Animals , Animals, Newborn , Brain/embryology , Brain/growth & development , Brain/metabolism , Embryo, Mammalian , F2-Isoprostanes/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Glutathione/metabolism , L-Gulonolactone Oxidase/genetics , Liver/embryology , Liver/growth & development , Liver/metabolism , Male , Malondialdehyde/metabolism , Mice , Mice, Knockout , Protein Carbonylation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...