Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(34): 18855-18864, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37587434

ABSTRACT

Water has been recognized as an excellent solvent for maneuvering both the catalytic activity and selectivity, especially in the case of heterogeneous catalysis. However, maintaining the active catalytic species in their higher oxidation states (IV/V) while retaining the catalytic activity and recyclability in water is an enormous challenge. Herein, we have developed a solution to this problem using covalent organic frameworks (COFs) to immobilize the (Et4N)2[FeIII(Cl)bTAML] molecules, taking advantage of the COF's morphology and surface charge. By using the visible light and [CoIII(NH3)5Cl]Cl2 as a sacrificial electron acceptor within the COF, we have successfully generated and stabilized the [(bTAML)FeIV-O-FeIV(bTAML)]- species in water. The COF backbone simultaneously acts as a porous host and a photosensitizer. This is the first time that the photochemically generated Fe2IV-µ-oxo radical cation species has demonstrated high catalytic activity with moderate to high yield for the selective oxidation of the unactivated C-H bonds, even in water. To enhance the catalytic activity and achieve good recyclability, we have developed a TpDPP COF film by transforming the TpDPP COF nanospheres. We have achieved the regio- and stereoselective functionalization of unactivated C-H bonds of alkanes and alkenes (3°:2° = 102:1 for adamantane with the COF film), which is improbable in homogeneous conditions. The film exhibits C-H bond oxidation with higher catalytic yield (32-98%) and a higher degree of selectivity (cis/trans = 74:1; 3°:2° = 100:1 for cis-decalin).

2.
J Am Chem Soc ; 145(29): 15695-15701, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37435957

ABSTRACT

The highly enantioselective and complete hydrogenation of protected indoles and benzofurans has been developed, affording facile access to a range of chiral three-dimensional octahydroindoles and octahydrobenzofurans, which are prevalent in many bioactive molecules and organocatalysts. Remarkably, we are in control of the nature of the ruthenium N-heterocyclic carbene complex and employed the complex as both homogeneous and heterogeneous catalysts, providing new avenues for its potential applications in the asymmetric hydrogenation of more challenging aromatic compounds.

3.
Chemistry ; 29(60): e202301482, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37488067

ABSTRACT

Surface modification of indium tin oxide (ITO) electrodes with organic molecules is known to tune their work function which results in higher charge carrier selectivity in corresponding organic electronic devices and hence influences the performance of organic solar cells. In recent years, N-heterocyclic carbenes (NHCs) have also been proven to be capable to modify the work function of metals and semimetals compared to the unfunctionalized surface via the formation of strong covalent bonds. In this report, we have designed and performed the modification of the ITO surface with NHC by using the zwitterionic bench stable IPr-CO2 as the NHC precursor, applied via spin coating. Upon modification, the work function of ITO electrodes was reduced significantly which resulted in electron selective contacts in corresponding organic photovoltaic devices. In addition, various characterization techniques and analytical methods are used to elucidate the nature of the bound species and the corresponding binding mechanism of the material to the ITO surface.

4.
J Am Chem Soc ; 145(26): 14475-14483, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37339245

ABSTRACT

Few-layer organic nanosheets are becoming increasingly attractive as two-dimensional (2D) materials due to their precise atomic connectivity and tailor-made pores. However, most strategies for synthesizing nanosheets rely on surface-assisted methods or top-down exfoliation of stacked materials. A bottom-up approach with well-designed building blocks would be the convenient pathway to achieve the bulk-scale synthesis of 2D nanosheets with uniform size and crystallinity. Herein, we have synthesized crystalline covalent organic framework nanosheets (CONs) by reacting tetratopic thianthrene tetraaldehyde (THT) and aliphatic diamines. The bent geometry of thianthrene in THT retards the out-of-plane stacking, while the flexible diamines introduce dynamic characteristics into the framework, facilitating nanosheet formation. Successful isoreticulation with five diamines with two to six carbon chain lengths generalizes the design strategy. Microscopic imaging reveals that the odd and even diamine-based CONs transmute to different nanostructures, such as nanotubes and hollow spheres. The single-crystal X-ray diffraction structure of repeating units indicates that the odd-even linker units of diamines introduce irregular-regular curvature in the backbone, aiding such dimensionality conversion. Theoretical calculations shed more light on nanosheet stacking and rolling behavior with respect to the odd-even effects.

5.
J Am Chem Soc ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36781169

ABSTRACT

A catalytic approach of synthesizing the cis-selective saturated carbo- and heterocyclic germanium compounds (3D framework) is reported via the hydrogenation of readily accessible aromatic germanes (2D framework). Among the numerous catalysts tested, Nishimura's catalyst (Rh2O3/PtO2·H2O) exhibited the best hydrogenation reactivity with an isolated yield of up to 96%. A broad range of substrates including the synthesis of unprecedented saturated heterocyclic germanes was explored. This selective hydrogenation strategy could tolerate several functional groups such as -CF3, -OR, -F, -Bpin, and -SiR3 groups. The synthesized products demonstrated the applications in coupling reactions including the newly developed strategy of aza-Giese-type addition reaction (C-N bond formation) from the saturated cyclic germane product. These versatile motifs can have a substantial value in organic synthesis and medicinal chemistry as they show orthogonal reactivity in coupling reactions while competing with other coupling partners such as boranes or silanes, acquiring a three-dimensional structure with high stability and robustness.

6.
J Am Chem Soc ; 145(3): 1649-1659, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36622362

ABSTRACT

The synthesis of homogeneous covalent organic framework (COF) thin films on a desired substrate with decent crystallinity, porosity, and uniform thickness has great potential for optoelectronic applications. We have used a solution-processable sphere transmutation process to synthesize 300 ± 20 nm uniform COF thin films on a 2 × 2 cm2 TiO2-coated fluorine-doped tin oxide (FTO) surface. This process controls the nucleation of COF crystallites and molecular morphology that helps the nanospheres to arrange periodically to form homogeneous COF thin films. We have synthesized four COF thin films (TpDPP, TpEtBt, TpTab, and TpTta) with different functional backbones. In a close agreement between the experiment and density functional theory, the TpEtBr COF film showed the lowest optical band gap (2.26 eV) and highest excited-state lifetime (8.52 ns) among all four COF films. Hence, the TpEtBr COF film can participate in efficient charge generation and separation. We constructed optoelectronic devices having a glass/FTO/TiO2/COF-film/Au architecture, which serves as a model system to study the optoelectronic charge transport properties of COF thin films under dark and illuminated conditions. Visible light with a calibrated intensity of 100 mW cm-2 was used for the excitation of COF thin films. All of the COF thin films exhibit significant photocurrent after illumination with visible light in comparison to the dark. Hence, all of the COF films behave as good photoactive substrates with minimal pinhole defects. The fabricated out-of-plane photodetector device based on the TpEtBr COF thin film exhibits high photocurrent density (2.65 ± 0.24 mA cm-2 at 0.5 V) and hole mobility (8.15 ± 0.64 ×10-3 cm2 V-1 S-1) compared to other as-synthesized films, indicating the best photoactive characteristics.

7.
J Am Chem Soc ; 144(26): 11482-11498, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35754375

ABSTRACT

The practical utilization of covalent organic frameworks (COFs) with manipulation at the atomic and molecular scale often demands their assembly on the nano-, meso-, and macroscale with precise control. Consequently, synthetic approaches that establish the ability to control the nucleation and growth of COF crystallites and their self-assembly to desired COF nanomorphologies have drawn substantial attention from researchers. On the basis of the dimensionality of the COF morphologies, we can categorize them into zero- (0-D), one- (1-D), two- (2-D), and three-dimensional (3-D) nanomorphologies. In this perspective, we summarize the reported synthetic strategies that enable precise control of the COF nanomorphologies' size, shape, and dimensionality and reveal the impact of the dimensionalities in their physicochemical properties and applications. The aim is to establish a synergistic optimization of the morphological dimensionality while keeping the micro- or mesoporosity, crystallinity, and chemical functionalities of the COFs in perspective. A detailed knowledge along the way should help us to enrich the performance of COFs in a variety of applications like catalysis, separation, sensing, drug delivery, energy storage, etc. We have discussed the interlinking between the COF nanomorphologies via the transmutation of the dimensionalities. Such dimensionality transmutation could lead to variation in their properties during the transition. Finally, the concept of constructing COF superstructures through the combination of two or more COF nanomorphologies has been explored, and it could bring up opportunities for developing next-generation innovative materials for multidisciplinary applications.


Subject(s)
Metal-Organic Frameworks , Catalysis , Metal-Organic Frameworks/chemistry , Structure-Activity Relationship
8.
J Am Chem Soc ; 143(49): 20916-20926, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34855393

ABSTRACT

Synthesis of covalent organic framework (COF) thin films on different supports with high crystallinity and porosity is crucial for their potential applications. We have designed a new synchronized methodology, residual crystallization (RC), to synthesize sub 10 nm COF thin films. These residual crystallized COF thin films showcase high surface area, crystallinity, and conductivity at room temperature. We have used interfacial crystallization (IC) as a rate-controlling tool for simultaneous residual crystallization. We have also diversified the methodology of residual crystallization by utilizing two different crystallization pathways: fiber-to-film (F-F) and sphere-to-film (S-F). In both cases, we could obtain continuous COF thin films with high crystallinity and porosity grown on various substrates (the highest surface area of a TpAzo COF thin film being 2093 m2 g-1). Precise control over the crystallization allows the synthesis of macroscopic defect-free sub 10 nm COF thin films with a minimum thickness of ∼1.8 nm. We have synthesized two COF thin films (TpAzo and TpDPP) using F-F and S-F pathways on different supports such as borosilicate glass, FTO, silicon, Cu, metal, and ITO. Also, we have investigated the mechanism of the growth of these thin films on various substrates with different wettability. Further, a hydrophilic support (glass) was used to grow the thin films in situ for four-probe system device fabrication. All residual crystallized COF thin films exhibit outstanding conductivity values. We could obtain a conductivity of 3.7 × 10-2 mS cm-1 for the TpAzo film synthesized by S-F residual crystallization.

9.
J Am Chem Soc ; 143(22): 8426-8436, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34029465

ABSTRACT

Heterogeneous catalysis in water has not been explored beyond certain advantages such as recyclability and recovery of the catalysts from the reaction medium. Moreover, poor yield, extremely low selectivity, and active catalytic site deactivation further underrate the heterogeneous catalysis in water. Considering these facts, we have designed and synthesized solution-dispersible porous covalent organic framework (COF) nanospheres. We have used their distinctive morphology and dispersibility to functionalize unactivated C-H bonds of alkanes heterogeneously with high catalytic yield (42-99%) and enhanced regio- and stereoselectivity (3°:2° = 105:1 for adamantane). Further, the fabrication of catalyst-immobilized COF nanofilms via covalent self-assembly of catalytic COF nanospheres for the first time has become the key toward converting the catalytically inactive homogeneous catalysts into active and effective heterogeneous catalysts operating in water. This unique covalent self-assembly occurs through the protrusion of the fibers at the interface of two nanospheres, transmuting the catalytic spheres into films without any leaching of catalyst molecules. The catalyst-immobilized porous COF nanofilms' chemical functionality and hydrophobic environment stabilize the high-valent transient active oxoiron(V) intermediate in water and restricts the active catalytic site's deactivation. These COF nanofilms functionalize the unactivated C-H bonds in water with a high catalytic yield (45-99%) and with a high degree of selectivity (cis:trans = 155:1; 3°:2° = 257:1, for cis-1,2-dimethylcyclohexane). To establish this approach's "practical implementation", we conducted the catalysis inflow (TON = 424 ± 5) using catalyst-immobilized COF nanofilms fabricated on a macroporous polymeric support.

10.
J Am Chem Soc ; 143(2): 955-963, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33406365

ABSTRACT

Nanomechanics signifies a key tool to interpret the macroscopic mechanical properties of a porous solid in the context of molecular-level structure. However, establishing such a correlation has proved to be significantly challenging in porous covalent organic frameworks (COFs). Structural defects or packing faults within the porous matrix, poor understanding of the crystalline assembly, and surface roughness are critical factors that contribute to this difficulty. In this regard, we have fabricated two distinct types of COF thin films by controlling the internal order and self-assembly of the same building blocks. Interestingly, the defect density and the nature of supramolecular interactions played a significant role in determining the corresponding thin films' stress-strain behavior. Thin films assembled from nanofibers (∼1-2 µm) underwent large deformation on the application of small external stress (Tp-Azofiber film: E ≈ 1.46 GPa; H ≈ 23 MPa) due to weak internal forces. On the other hand, thin films threaded with nanospheres (∼600 nm) exhibit a much stiffer and harder mechanical response (Tp-Azosphere film: E ≈ 15.3 GPa; H ≈ 66 MPa) due to strong covalent interactions and higher crystallinity. These porous COF films further exhibited a significant elastic recovery (∼80%), ideal for applications dealing with shock-resistant materials. This work provides in-depth insight into the fabrication of industrially relevant crystalline porous thin films and membranes by addressing the previously unanswered questions about the mechanical constraints in COFs.

11.
J Am Chem Soc ; 141(51): 20371-20379, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31782923

ABSTRACT

Insolubility of covalent organic frameworks (COFs) in organic solvents is one of the major obstacles for the potential application of these extended networks such as drug delivery, sensing, optoelectronics, and semiconductor device fabrication. The present work proposes a unique way to make uniform, solution-processable, crystalline, and porous COF nanospheres directly from the homogeneous solution of amine and aldehyde via spatial and temporal control of the nucleation and growth. This strategy of direct nucleation simultaneously showcases the caliber to tune the size of the COF nanospheres from 25 to 570 nm. We have also demonstrated the concept of mesoscale covalent self-assembly of those solution-processable COF nanospheres in the liquid-liquid interface (DCM-water bilayer) for the very first time, transmuting them into self-standing COF thin films with long-range ordered arrangements in two dimensions. The crystalline and porous (with TpAzo showing highest SBET of 1932 m2 g-1) free-standing COF thin films could be fabricated in a wide range of thicknesses from as low as 21 nm to as high as 630 nm. Both ß-ketoenamine (TpAzo, TpDPP) and imine (TpOMeAzo, TpOMeDPP) linked COF thin films have been synthesized via mesoscale covalent self-assembly of the solution-processable COF nanospheres illustrating the generality of this eloquent methodology. Further, the solution processability has been tested and utilized to cast COF thin films uniformly in the inner and outer surface of an alumina hollow fiber membrane. The COF thin film-alumina hollow fiber membrane composites have showcased promising selective molecular separation of He and O2, He and CO2, and He and N2.

12.
J Am Chem Soc ; 140(35): 10941-10945, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30132332

ABSTRACT

Covalent organic frameworks (COFs) have emerged as promising electrode materials in supercapacitors (SCs). However, their insoluble powder-like nature, poor capacitive performance in pristine form, integrated with inferior electrochemical stability is a primary concern for their long-term use in electrochemical devices. Keeping this in perspective, herein we report a redox active and hydrogen bonded COF with ultrahigh stability in conc. H2SO4 (18 M), conc. HCl (12 M) and NaOH (9 M). The as-synthesized COF fabricated as thin sheets were efficiently employed as a free-standing supercapacitor electrode material using 3 M aq. H2SO4 as an electrolyte. Moreover, the pristine COF sheet showcased outstanding areal capacitance 1600 mF cm-2 (gravimetric 169 F g-1) and excellent cyclic stability (>100 000) without compromising its capacitive performance or Coulombic efficiency. Moreover, as a proof-of-concept, a solid-state supercapacitor device was also assembled and subsequently tested.

13.
Angew Chem Int Ed Engl ; 57(34): 10894-10898, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-29958331

ABSTRACT

Poor mechanical stability of the polymer electrolyte membranes remains one of the bottlenecks towards improving the performance of the proton exchange membrane (PEM) fuel cells. The present work proposes a unique way to utilize crystalline covalent organic frameworks (COFs) as a self-standing, highly flexible membrane to further boost the mechanical stability of the material without compromising its innate structural characteristics. The as-synthesized p-toluene sulfonic acid loaded COF membranes (COFMs) show the highest proton conductivity (as high as 7.8×10-2  S cm-1 ) amongst all crystalline porous organic polymeric materials reported to date, and were tested under real PEM operating conditions to ascertain their practical utilization as proton exchange membranes. Attainment of 24 mW cm-2 power density, which is the highest among COFs and MOFs, highlights the possibility of using a COF membrane over the other state-of-the-art crystalline porous polymeric materials reported to date.

14.
ACS Appl Mater Interfaces ; 9(15): 13785-13792, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28368103

ABSTRACT

The development of nanoparticle-polymer-hybrid-based heterogeneous catalysts with high reactivity and good recyclability is highly desired for their applications in the chemical and pharmaceutical industries. Herein, we have developed a novel synthetic strategy by choosing a predesigned metal-anchored building block for in situ generation of metal (Pd) nanoparticles in the stable, porous, and crystalline covalent organic framework (COF), without using conventional reducing agents. In situ generation of Pd nanoparticles in the COF skeleton is explicitly confirmed from PXRD, XPS, TEM images, and 15N NMR spectral analysis. This hybrid material is found to be an excellent reusable heterogeneous catalyst for the synthesis of biologically and pharmaceutically important 2-substituted benzofurans from 2-bromophenols and terminal alkynes via a tandem process with the turnover number up to 1101. The heterogeneity of the catalytic process is unambiguously verified by a mercury poisoning experiment and leaching test. This hybrid material shows superior catalytic performance compared to commercially available homogeneous as well as heterogeneous Pd catalysts.

15.
J Am Chem Soc ; 139(12): 4513-4520, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28256830

ABSTRACT

Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality, and chemical stability. They could become versatile candidates for targeted drug delivery. Despite their many advantages, there are limitations to their use for target specific drug delivery. We anticipated that these drawbacks could be overturned by judicious postsynthetic modification steps to use CONs for targeted drug delivery. The postsynthetic modification would not only produce the desired functionality, it would also help to exfoliate to CONs as well. In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in the presence of p-toluenesulfonic acid (PTSA). The COFs were subjected to sequential postsynthetic modifications to yield functionalized targeted CONs for targeted delivery of 5-fluorouracil to breast cancer cells. This postsynthetic modification resulted in simultaneous chemical delamination and functionalization to targeted CONs. Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis. Considering the easy and facile COF synthesis, functionality based postsynthetic modifications, and chemical delamination to CONs for potential advantageous targeted drug delivery, this process can have a significant impact in biomedical applications.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Benzenesulfonates/chemistry , Drug Delivery Systems , Fluorouracil/pharmacology , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Antimetabolites, Antineoplastic/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Fluorouracil/chemistry , Humans , Metal-Organic Frameworks/chemical synthesis , Molecular Structure , Particle Size , Structure-Activity Relationship , Surface Properties
16.
J Am Chem Soc ; 139(5): 1856-1862, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28106987

ABSTRACT

Research on covalent organic frameworks (COFs) has recently gathered significant momentum by the virtue of their predictive design, controllable porosity, and long-range ordering. However, the lack of solvent-free and easy-to-perform synthesis processes appears to be the bottleneck toward their greener fabrication, thereby limiting their possible potential applications. To alleviate such shortcomings, we demonstrate a simple route toward the rapid synthesis of highly crystalline and ultraporous COFs in seconds using a novel salt-mediated crystallization approach. A high degree of synthetic control in interlayer stacking and layer planarity renders an ordered network with a surface area as high as 3000 m2 g-1. Further, this approach has been extrapolated for the continuous synthesis of COFs by means of a twin screw extruder and in situ processes of COFs into different shapes mimicking the ancient terracotta process. Finally, the regular COF beads are shown to outperform the leading zeolites in water sorption performance, with notably facile regeneration ability and structural integrity.

SELECTION OF CITATIONS
SEARCH DETAIL
...