Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 24299-24307, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882089

ABSTRACT

In semiconductor manufacturing, the sublimation drying process is crucial but poorly understood-particularly regarding the solidification of agents such as cyclohexanol on Si substrates. This knowledge gap results in inconsistent film properties and risks such as structural collapse. To address this critical gap in knowledge, the present study focused on an in-depth examination of the nucleation behavior exhibited by cyclohexanol during its cooling and solidification on Si substrates. Using a digital camera (GoPro10), the solidification process in experiments was recorded for a range of cooling rates and using substrates with distinct surface patterns. To evaluate temporal changes in crystal nucleation, video images were visually checked, and the temporal changes in the number of nuclei were examined. For a more quantitative analysis, the least-squares method was successfully employed to correlate mathematical equations to time-dependent nucleation data. Interestingly, the outcomes revealed significant correlations between the nucleation rate, cooling rate, and substrate pattern. In summary, this research offers a robust experimental framework for understanding the complex solidification behavior of cyclohexanol on Si substrates. The study contributes both qualitative and quantitative analyses, enriching our understanding of the variables that govern the solidification process, which has significant implications for enhancing the overall reliability and efficiency of semiconductor manufacturing.

2.
Langmuir ; 40(8): 4033-4043, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38356265

ABSTRACT

Sublimation drying is used in the drying process of semiconductor device manufacturing. However, the solidification behavior mechanics of sublimation agents on substrates has not been clarified. Therefore, the properties of solidified films within substrate surfaces can become nonuniform, leading to their collapse. This study aimed to analyze the interface growth behavior during the cooling and solidification of a water/ice system as a basic case and to clarify the dynamic mechanism of the solidification behavior of liquid films on Si substrates. The solidification behavior of a water/ice system on Si substrates was captured on a video at different cooling rates. The recorded video was subjected to a digital image analysis to examine the crystal morphology and quantify the interface growth rate. The least-squares method with kinetic formulas was used to evaluate the feasibility of fitting the temperature variation to the interface growth rate. A visual examination of the morphology of interfacial growth revealed that it can be classified into four morphologies. The proposed kinetic equation describes the experimental results regarding the temperature dependence of the interfacial growth rate. Through image analysis, the interface growth rate of water and ice was quantified, and an evaluation formula was proposed.

3.
Materials (Basel) ; 15(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591538

ABSTRACT

The effect of high temperatures on rock's thermophysical and mechanical properties is critical to the design of underground geotechnical applications. The current work investigates the impact of temperature on rhyolitic turf rock's physical and mechanical properties. Intact cylindrical core rock samples were heated to different temperatures (200, 400, 600, and 800 °C). The uniaxial compressive strength (UCS) and elastic modulus of unheated and heated samples were determined as important mechanical properties. In addition, the effect of temperature on the physical properties of rhyolite rock (density, color, and absorption) was investigated in conjunction with its microstructural properties. The hardening of the rhyolitic rock samples was observed below 600 °C, at which point the UCS and elastic modulus decreased to 78.0% and 75.9%, respectively, at 800 °C. The results also show that heating does not significantly affect the density and volume of permeable pore space, but a color change can be observed at 400 °C and above. A microscopic analysis shows the change in microstructural properties of rhyolite rock after heating to 600 °C. Furthermore, the SEM observations of heated materials show structural particle displacements and microcracking, leading to apparent surface cracks.

4.
Molecules ; 24(17)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31454996

ABSTRACT

The membrane electrode assembly (MEA) plays an important role in the proton exchange membrane fuel cell (PEMFC) performance. Typically, the structure comprises of a polymer electrolyte membrane sandwiched by agglomerate catalyst layers at the anode and cathode. Optimization of various parameters in the design of MEA is, thus, essential for reducing cost and material usage, while improving cell performance. In this paper, optimization of MEA is performed using a validated two-phase PEMFC numerical model. Key MEA parameters affecting the performance of a single PEMFC are determined from sensitivity analysis and are optimized using the response surface method (RSM). The optimization is carried out at two different operating voltages. The results show that membrane thickness and membrane protonic conductivity coefficient are the most significant parameters influencing cell performance. Notably, at higher voltage (0.8 V per cell), the current density can be improved by up to 40% while, at a lower voltage (0.6 V per cell), the current density may be doubled. The results presented can be of importance for fuel cell engineers to improve the stack performance and expedite the commercialization.


Subject(s)
Bioelectric Energy Sources , Electrochemistry/instrumentation , Electrodes , Membranes, Artificial
5.
Entropy (Basel) ; 21(2)2019 Feb 18.
Article in English | MEDLINE | ID: mdl-33266906

ABSTRACT

Owing to its relatively high heat transfer performance and simple configurations, liquid cooling remains the preferred choice for electronic cooling and other applications. In this cooling approach, channel design plays an important role in dictating the cooling performance of the heat sink. Most cooling channel studies evaluate the performance in view of the first thermodynamics aspect. This study is conducted to investigate flow behaviour and heat transfer performance of an incompressible fluid in a cooling channel with oblique fins with regards to first law and second law of thermodynamics. The effect of oblique fin angle and inlet Reynolds number are investigated. In addition, the performance of the cooling channels for different heat fluxes is evaluated. The results indicate that the oblique fin channel with 20° angle yields the highest figure of merit, especially at higher Re (250-1000). The entropy generation is found to be lowest for an oblique fin channel with 90° angle, which is about twice than that of a conventional parallel channel. Increasing Re decreases the entropy generation, while increasing heat flux increases the entropy generation.

6.
Micromachines (Basel) ; 9(2)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-30393346

ABSTRACT

The micro-mixer has been widely used in mixing processes for chemical and pharmaceutical industries. We introduced an improved and easy to manufacture micro-mixer design utilizing the wavy structure micro-channel T-junction which can be easily manufactured using a simple stamping method. Here, we aim to optimize the geometrical parameters, i.e., wavy frequency, wavy amplitude, and width and height of the micro channel by utilizing the robust Taguchi statistical method with regards to the mixing performance (mixing index), pumping power and figure of merit (FoM). The interaction of each design parameter is evaluated. The results indicate that high mixing performance is not always associated with high FoM due to higher pumping power. Higher wavy frequency and amplitude is required for good mixing performance; however, this is not the case for pumping power due to an increase in Darcy friction loss. Finally, the advantages and limitations of the designs and objective functions are discussed in the light of present numerical results.

7.
Sci Total Environ ; 481: 317-34, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24607396

ABSTRACT

Diesel engine is widely used in underground mining machines due to its efficiency, ease of maintenance, reliability and durability. However, it possesses significant danger to the miners and mining operations as it releases hazardous gases (CO, NO, CO2) and fine particles which can be easily inhaled by the miners. Moreover, the diesel engine consumes significant amount of oxygen which can lead to insufficient oxygen supply for miners. It is therefore critical to maintain sufficient oxygen supply while keeping hazardous gas concentrations from diesel emission below the maximum allowable level. The objective of this study is to propose and to examine various innovative ventilation strategies to control oxygen and hazardous gas concentrations in underground mine to ensure safety, productivity and cost related to energy consumption. Airflow distribution, oxygen and hazardous gas dispersion as well as ambient temperature within the mining area are evaluated by utilizing the well-established computational fluid dynamics (CFD) approach. The results suggest that our newly proposed ventilation design performs better as compared to the conventional design to handle hazardous gases from diesel emission.


Subject(s)
Air Pollutants, Occupational/analysis , Hazardous Substances/analysis , Inhalation Exposure/prevention & control , Occupational Exposure/prevention & control , Air Pollutants/analysis , Inhalation Exposure/statistics & numerical data , Mining , Occupational Exposure/statistics & numerical data , Vehicle Emissions/analysis , Ventilation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...