Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 12: 639953, 2021.
Article in English | MEDLINE | ID: mdl-33868338

ABSTRACT

Human norovirus is the leading cause of acute nonbacterial gastroenteritis in people of all ages worldwide. Currently, no licensed norovirus vaccine, pharmaceutical drug, or therapy is available for the control of norovirus infection. Here, we used a rice transgenic system, MucoRice, to produce a variable domain of a llama heavy-chain antibody fragment (VHH) specific for human norovirus (MucoRice-VHH). VHH is a small heat- and acid-stable protein that resembles a monoclonal antibody. Consequently, VHHs have become attractive and useful antibodies (Abs) for oral immunotherapy against intestinal infectious diseases. MucoRice-VHH constructs were generated at high yields in rice seeds by using an overexpression system with RNA interference to suppress the production of the major rice endogenous storage proteins. The average production levels of monomeric VHH (7C6) to GII.4 norovirus and heterodimeric VHH (7C6-1E4) to GII.4 and GII.17 noroviruses in rice seed were 0.54 and 0.28% (w/w), respectively, as phosphate buffered saline (PBS)-soluble VHHs. By using a human norovirus propagation system in human induced pluripotent stem-cell-derived intestinal epithelial cells (IECs), we demonstrated the high neutralizing activity of MucoRice expressing monomeric VHH (7C6) against GII.4 norovirus and of heterodimeric VHH (7C6-1E4) against both GII.4 and GII.17 noroviruses. In addition, MucoRice-VHH (7C6-1E4) retained neutralizing activity even after heat treatment at 90°C for 20 min. These results build a fundamental platform for the continued development of MucoRice-VHH heterodimer as a candidate for oral immunotherapy and for prophylaxis against GII.4 and GII.17 noroviruses in not only healthy adults and children but also immunocompromised patients and the elderly.

2.
Nat Commun ; 12(1): 1067, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594081

ABSTRACT

Increases in adhesive and invasive commensal bacteria, such as Escherichia coli, and subsequent disruption of the epithelial barrier is implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the protective systems against such barrier disruption are not fully understood. Here, we show that secretion of luminal glycoprotein 2 (GP2) from pancreatic acinar cells is induced in a TNF-dependent manner in mice with chemically induced colitis. Fecal GP2 concentration is also increased in Crohn's diease patients. Furthermore, pancreas-specific GP2-deficient colitis mice have more severe intestinal inflammation and a larger mucosal E. coli population than do intact mice, indicating that digestive-tract GP2 binds commensal E. coli, preventing epithelial attachment and penetration. Thus, the pancreas-intestinal barrier axis and pancreatic GP2 are important as a first line of defense against adhesive and invasive commensal bacteria during intestinal inflammation.


Subject(s)
Inflammation/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Membrane Glycoproteins/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Colitis/metabolism , Colitis/pathology , Cytokines/metabolism , Dextran Sulfate , Escherichia coli/drug effects , Escherichia coli/physiology , Feces , Green Fluorescent Proteins/metabolism , Humans , Immunoglobulin A/metabolism , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Pancreas/pathology , Recombinant Proteins/pharmacology , Transcription Factors/metabolism , Up-Regulation/genetics
3.
BMC Genomics ; 22(1): 59, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33468052

ABSTRACT

BACKGROUND: We have previously developed a rice-based oral vaccine against cholera diarrhea, MucoRice-CTB. Using Agrobacterium-mediated co-transformation, we produced the selection marker-free MucoRice-CTB line 51A, which has three copies of the cholera toxin B subunit (CTB) gene and two copies of an RNAi cassette inserted into the rice genome. We determined the sequence and location of the transgenes on rice chromosomes 3 and 12. The expression of alpha-amylase/trypsin inhibitor, a major allergen protein in rice, is lower in this line than in wild-type rice. Line 51A was self-pollinated for five generations to fix the transgenes, and the seeds of the sixth generation produced by T5 plants were defined as the master seed bank (MSB). T6 plants were grown from part of the MSB seeds and were self-pollinated to produce T7 seeds (next seed bank; NSB). NSB was examined and its whole genome and proteome were compared with those of MSB. RESULTS: We re-sequenced the transgenes of NSB and MSB and confirmed the positions of the three CTB genes inserted into chromosomes 3 and 12. The DNA sequences of the transgenes were identical between NSB and MSB. Using whole-genome sequencing, we compared the genome sequences of three NSB with three MSB samples, and evaluated the effects of SNPs and genomic structural variants by clustering. No functionally important mutations (SNPs, translocations, deletions, or inversions of genic regions on chromosomes) between NSB and MSB samples were detected. Analysis of salt-soluble proteins from NSB and MSB samples by shot-gun MS/MS detected no considerable differences in protein abundance. No difference in the expression pattern of storage proteins and CTB in mature seeds of NSB and MSB was detected by immuno-fluorescence microscopy. CONCLUSIONS: All analyses revealed no considerable differences between NSB and MSB samples. Therefore, NSB can be used to replace MSB in the near future.


Subject(s)
Cholera Vaccines , Oryza , Cholera Toxin/genetics , Oryza/genetics , Plants, Genetically Modified/genetics , Proteomics , Seed Bank , Tandem Mass Spectrometry
4.
Gene ; 762: 145015, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32783994

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC) is a carbon fixation enzyme which probably plays crucial roles in seed development. A greater number of PEPC isoforms are encoded in the soybean genome, while most of the PEPC isoforms are functionally unknown. In this study, we investigated on soybean PEPC expressed in the external layer of seed coat (ELSC) during seed formation. PEPC activity in ELSC ranged from 0.24 to 1.0 U/g F.W., which could be comparable to those in whole seeds at U per dry matter. Public RNA-Seq data in separated soybean seed tissues revealed that six plant-type PEPC isogenes were substantially expressed in ELSC, and Gmppc1 and Gmppc7 were highly expressed in hourglass cells of ELSC. Gene Ontology enrichment of co-expressed genes with Gmppc1 and Gmppc7 implicated a role of these isogenes in assisting energy production and cellulose biosynthesis. Comparison of PEPC sequences from 16 leguminous species hypothesized adaptive evolution of the Gmppc1 and Gmppc7 lineage after divergence from the other plant-type PEPC lineages. Molecular diversification of these plant-type PEPC was possibly accomplished by adaptation to the functions of the soybean seed tissues. This study indicates that energy demand in immature seeds may be a driving force for the molecular evolution of PEPC.


Subject(s)
Glycine max/genetics , Phosphoenolpyruvate Carboxylase/genetics , Plant Proteins/genetics , Evolution, Molecular , Phosphoenolpyruvate Carboxylase/metabolism , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Glycine max/metabolism
5.
J Infect Dis ; 222(3): 470-478, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32211769

ABSTRACT

Human noroviruses cause an estimated 685 million infections and 200 000 deaths annually worldwide. Although vaccines against GII.4 and GI.1 genotypes are under development, no information is available regarding vaccines or monoclonal antibodies to other noroviral genotypes. Here, we developed 2 variable-domain llama heavy-chain antibody fragment (VHHs) clones, 7C6 and 1E4, against GII.4 and GII.17 human noroviruses, respectively. Although 7C6 cross-reacted with virus-like particles (VLPs) of GII.17, GII.6, GII.3, and GII.4, it neutralized only GII.4 norovirus. In contrast, 1E4 reacted with and neutralized only GII.17 VLPs. Both VHHs blocked VLP binding to human induced pluripotent stem cell-derived intestinal epithelial cells and carbohydrate attachment factors. Using these 2 VHHs, we produced a heterodimeric VHH fragment that neutralized both GII.4 and GII.17 noroviruses. Because VHH fragments are heat- and acid-stable recombinant monoclonal antibodies, the heterodimer likely will be useful for oral immunotherapy and prophylaxis against GII.4 and GII.17 noroviruses in young, elderly, or immunocompromised persons.


Subject(s)
Antibodies, Monoclonal/immunology , Caliciviridae Infections/prevention & control , Capsid Proteins/immunology , Immunization, Passive/methods , Immunoglobulin Fragments/immunology , Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/immunology , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Capsid Proteins/genetics , Cross Reactions , Epitopes/immunology , Humans , Immunoglobulin Fragments/administration & dosage , Induced Pluripotent Stem Cells/immunology , Norovirus/drug effects , Norovirus/genetics , Norovirus/immunology , Recombinant Proteins/immunology
6.
Biosci Biotechnol Biochem ; 84(3): 552-562, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31771419

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC) is a carbon-fixing enzyme with critical roles in seed development. Previously we observed a positive correlation between PEPC activity and protein content in mature seeds among soybean cultivars and varietal differences of PEPC activity in immature seeds, which is concordant with seed protein accumulation. Here, we report a PEPC isoform (Gmppc2) which is preferentially expressed in immature soybean seeds at the late maturation stage. Gmppc2 was co-expressed with enzyme genes involved in starch degradation: α-amylase, hexokinase, and α-glucan phosphorylase. Gmppc2 was developmentally induced in the external seed coats, internal seed coats, hypocotyls, and cotyledons at the late maturation stage. The expression of Gmppc2 protein was negatively regulated by the application of a nitrogen fertilizer, which suppressed nodule formation. These results imply that Gmppc2 is involved in the metabolism of nitrogen originated from nodules into seeds, and Gmppc2 might be applicable as a biomarker of seed protein content.Abbreviations: PEP: phosphoenolpyruvate; PEPC: phosphoenolpyruvate carboxylase; RNA-Seq: RNA sequencing; PCA: principal component analysis; SE: standard error.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Glycine max/enzymology , Phosphoenolpyruvate Carboxylase/biosynthesis , Seeds/embryology , Biomarkers/metabolism , Enzyme Induction , Gene Expression Regulation, Plant , Genome, Plant , Phosphoenolpyruvate Carboxylase/genetics , Seeds/chemistry , Glycine max/embryology , Glycine max/genetics
7.
Sci Rep ; 9(1): 18544, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811157

ABSTRACT

Autophagy plays crucial roles in the recycling of metabolites, and is involved in many developmental processes. Rice mutants defective in autophagy are male sterile due to immature pollens, indicating its critical role in pollen development. However, physiological roles of autophagy during seed maturation had remained unknown. We here found that seeds of the rice autophagy-deficient mutant Osatg7-1, that produces seeds at a very low frequency in paddy fields, are smaller and show chalky appearance and lower starch content in the endosperm at the mature stage under normal growth condition. We comprehensively analyzed the effects of disruption of autophagy on biochemical properties, proteome and seed quality, and found an abnormal activation of starch degradation pathways including accumulation of α-amylases in the endosperm during seed maturation in Osatg7-1. These results indicate critical involvement of autophagy in metabolic regulation in the endosperm of rice, and provide insights into novel autophagy-mediated regulation of starch metabolism during seed maturation.


Subject(s)
Autophagy-Related Proteins/genetics , Autophagy/physiology , Endosperm/growth & development , Oryza/growth & development , Plant Proteins/genetics , Autophagy-Related Proteins/metabolism , Endosperm/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Mutation , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Starch/metabolism , Up-Regulation , alpha-Amylases/genetics , alpha-Amylases/metabolism
8.
Plant Biotechnol (Tokyo) ; 35(4): 405-409, 2018 Dec 25.
Article in English | MEDLINE | ID: mdl-31892830

ABSTRACT

Rice prolamin species form a layered structure in the protein body type I (PB-I) storage organelle. Rice prolamins are classified as 10 kDa, 13a-1, 13a-2, 13b-1, 13b-2 and 16 kDa prolamin. Prolamin species form layer structure in PB-I in order of 10 kDa core, 13b-1 layer, 13a (13a-1 and 13a-2) and 16 kDa middle layer and 13b-2 outer-most layer. In a previous study, we showed that the fusion proteins in 13b-2 prolamin-GFP, 13a-1 prolamin-GFP and 10 kDa prolamin-GFP were localized in the same layer of PB-I as the native prolamin, when they were expressed by their respective native prolamin promoters. Our preliminary study suggested that the temporal control of the native prolamin promoters was responsible for the localization of the respective prolamins. The aim of this study was to determine whether the use of a prolamin promoter other than the native prolamin promoter would change the localization of prolamin-GFP fusion proteins. For this purpose, we generated transgenic lines expressing 13b-2 prolamin-GFP and 13a-1 prolamin-GFP fusion proteins driven by each prolamin promoter other than the native prolamin promoter. As a result, the localization of the fusion protein in PB-I was changed. Based on our results, foreign protein localization in PB-I can be achieved by the temporal control of the different prolamin promoters.

9.
Plant Cell Rep ; 36(3): 481-491, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28028608

ABSTRACT

KEY MESSAGE: Rice prolamins are accumulated in endoplasmic reticulum (ER)-derived proteins bodies, although conserved sequences retained in ER are not confirmed. We investigated portion sequences of prolamins that must accumulate in PB-Is. Rice seed prolamins are accumulated in endoplasmic reticulum (ER)-derived protein body type I (PB-I), but ER retention sequences in rice prolamin polypeptides have not been confirmed. Here we investigated the lengths of the prolamin portion sequences required for accumulation in PB-Is. Of the rice prolamins, we compared 13a and 13b prolamins because the amino acid sequences of these prolamins are quite similar except for the presence or absence of Cys-residues. We also generated and analyzed transgenic rice expressing several prolamin portion sequence-GFP fusion proteins. We observed that in 13a prolamin, when the portion sequences were extended more than the 68th amino acid residue from the initiating methionine, the prolamin portion sequence-GFP fusion proteins were accumulated in PB-Is. In 13b prolamin, when the portion sequences were extended by more than the 82nd amino acid residue from the initiating methionine, the prolamin portion sequence-GFP fusion proteins were accumulated in PB-Is. When those fusion proteins were extracted under non-reduced or reduced conditions, the 13a prolamin portion sequence-GFP fusion proteins in PB-Is were soluble under only the reduced condition. In contrast, 13b prolamin portion sequence-GFP fusion proteins were soluble under both non-reduced and reduced conditions. These results suggest that the accumulation of 13a prolamin in PB-Is is associated with the formation of disulfide bonds and/or hydrophobicity in 13a prolamin polypeptide, whereas the accumulation of 13b prolamin in PB-Is was less involved in the formation of disulfide bonds.


Subject(s)
Oryza/metabolism , Peptides/metabolism , Prolamins/chemistry , Prolamins/metabolism , Seeds/metabolism , Amino Acid Sequence , Buffers , Green Fluorescent Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Plants, Genetically Modified , Recombinant Fusion Proteins/metabolism , Seeds/genetics , Sodium Dodecyl Sulfate/pharmacology
10.
Plant Cell Rep ; 35(6): 1287-95, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26910860

ABSTRACT

KEY MESSAGE: Prolamin-GFP fusion proteins, expressed under the control of native prolamin promoters, were localized in specific layers of PB-Is. Prolamin-GFP fusion proteins were gradually digested from outside by pepsin digestion. In rice seed endosperm, protein body type I (PB-I) has a layered structure consisting of prolamin species and is the resistant to digestive juices in the intestinal tract. We propose the utilization of PB-Is as an oral vaccine carrier to induce mucosal immune response effectively. If vaccine antigens are localized in a specific layer within PB-Is, they could be protected from gastric juice and be delivered intact to the small intestine. We observed the localization of GFP fluorescence in transgenic rice endosperm expressing prolamin-GFP fusion proteins with native prolamin promoters, and we confirmed that the foreign proteins were located in specific layers of PB-Is artificially. Each prolamin-GFP fusion protein was localized in specific layers of PB-Is, such as the outer-most layer, middle layer, and core region. Furthermore, to investigate the resistance of prolamin-GFP fusion proteins against pepsin digestion, we performed in vitro pepsin treatment. Prolamin-GFP fusion proteins were gradually digested from the peripheral region and the contours of PB-Is were made rough by in vitro pepsin treatment. These findings suggested that prolamin-GFP fusion proteins accumulating specific layers of PB-Is were gradually digested and exposed from the outside by pepsin digestion.


Subject(s)
Oryza/physiology , Peptides/metabolism , Seeds/physiology , Microscopy, Fluorescence , Oryza/metabolism , Peptides/physiology , Plant Proteins/metabolism , Plant Proteins/physiology , Plants, Genetically Modified , Recombinant Fusion Proteins , Seeds/metabolism
11.
Plant J ; 70(6): 1043-55, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22348505

ABSTRACT

Rice prolamins, a group of seed storage proteins, are synthesized on the rough endoplasmic reticulum (ER) and form type I protein bodies (PB-Is) in endosperm cells. Rice prolamins are encoded by a multigene family. In this study, the spatial accumulation patterns of various prolamin species in rice endosperm cells were investigated to determine the mechanism of formation of the internal structure of PB-Is. Immunofluorescence microscopic analysis of mature endosperm cells showed that the 10 kDa prolamin is mainly localized in the core of the PB-Is, the 13b prolamin is localized in the inner layer surrounding the core and the outermost layer, and the 13a and 16 kDa prolamins are localized in the middle layer. Real-time RT-PCR analysis showed that expression of the mRNA for 10 kDa prolamin precedes expression of 13a, 13b-1 and 16 kDa prolamin in the developing stages. mRNA expression for 13b-2 prolamin occurred after that of the other prolamin species. Immunoelectron microscopy of developing seeds showed that the 10 kDa prolamin polypeptide initially accumulates in the ER, and then 13b, 13a, 16 kDa and 13b prolamins are stacked in layers within the ER. Studies with transgenic rice seeds expressing prolamin-GFP fusion proteins under the control of native and constitutive promoters indicated that the temporal expression pattern of prolamin genes influenced the localization of prolamin proteins within the PB-Is. These findings indicate that the control of gene expression of prolamin species contributes to the internal structure of PB-Is.


Subject(s)
Endosperm/growth & development , Oryza/genetics , Prolamins/metabolism , Seeds/cytology , Endosperm/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Multigene Family , Oryza/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Prolamins/classification , Prolamins/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...