Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 2960, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273196

ABSTRACT

Clone collections of modified strains ("libraries") are a major resource for systematic studies with the yeast Saccharomyces cerevisiae. Construction of such libraries is time-consuming, costly and confined to the genetic background of a specific yeast strain. To overcome these limitations, we present CRISPR-Cas12a (Cpf1)-assisted tag library engineering (CASTLING) for multiplexed strain construction. CASTLING uses microarray-synthesized oligonucleotide pools and in vitro recombineering to program the genomic insertion of long DNA constructs via homologous recombination. One simple transformation yields pooled libraries with >90% of correctly tagged clones. Up to several hundred genes can be tagged in a single step and, on a genomic scale, approximately half of all genes are tagged with only ~10-fold oversampling. We report several parameters that affect tagging success and provide a quantitative targeted next-generation sequencing method to analyze such pooled collections. Thus, CASTLING unlocks avenues for increasing throughput in functional genomics and cell biology research.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Techniques , Saccharomyces cerevisiae/genetics , Clone Cells , Gene Library , Genetic Engineering , Genome, Fungal , Green Fluorescent Proteins/metabolism , Nuclear Proteins/metabolism
2.
PLoS Biol ; 17(3): e3000182, 2019 03.
Article in English | MEDLINE | ID: mdl-30925180

ABSTRACT

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Subject(s)
Biological Evolution , Escherichia coli/metabolism , Humans , Models, Genetic , Mutation/genetics , Saccharomyces cerevisiae/metabolism , Temperature
3.
Nat Methods ; 16(2): 205, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30602782

ABSTRACT

The version of Supplementary Table 1 originally published online with this article contained incorrect localization annotations for one plate. This error has been corrected in the online Supplementary Information.

4.
Nucleic Acids Res ; 47(D1): D1245-D1249, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30357397

ABSTRACT

The ability to measure the abundance and visualize the localization of proteins across the yeast proteome has stimulated hypotheses on gene function and fueled discoveries. While the classic C' tagged GFP yeast library has been the only resource for over a decade, the recent development of the SWAT technology has led to the creation of multiple novel yeast libraries where new-generation fluorescent reporters are fused at the N' and C' of open reading frames. Efficient access to these data requires a user interface to visualize and compare protein abundance, localization and co-localization across cells, strains, and libraries. YeastRGB (www.yeastRGB.org) was designed to address such a need, through a user-friendly interface that maximizes informative content. It employs a compact display where cells are cropped and tiled together into a 'cell-grid.' This representation enables viewing dozens of cells for a particular strain within a display unit, and up to 30 display units can be arrayed on a standard high-definition screen. Additionally, the display unit allows users to control zoom-level and overlay of images acquired using different color channels. Thus, YeastRGB makes comparing abundance and localization efficient, across thousands of cells from different strains and libraries.


Subject(s)
Computational Biology/methods , Databases, Protein , Gene Library , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Information Storage and Retrieval/methods , Internet , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Open Reading Frames/genetics , Proteome/genetics , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , User-Computer Interface
5.
Nat Methods ; 15(8): 617-622, 2018 08.
Article in English | MEDLINE | ID: mdl-29988094

ABSTRACT

Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries, we used our previously devised SWAp-Tag (SWAT) approach to construct a genome-wide library of ~5,500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins. In addition, we created six diverse libraries that restored the native regulation, created an overexpression library with a Cherry tag, or enabled protein complementation assays from two fragments of an enzyme or fluorophore. We developed methods utilizing these SWAT collections to systematically characterize the yeast proteome for protein abundance, localization, topology, and interactions.


Subject(s)
Genome, Fungal , Genomic Library , Proteome/genetics , Saccharomyces cerevisiae/genetics , Genetic Complementation Test , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protein Interaction Mapping , Proteome/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Tagged Sites
6.
Nat Methods ; 15(8): 598-600, 2018 08.
Article in English | MEDLINE | ID: mdl-29988096

ABSTRACT

Here we describe a C-SWAT library for high-throughput tagging of Saccharomyces cerevisiae open reading frames (ORFs). In 5,661 strains, we inserted an acceptor module after each ORF that can be efficiently replaced with tags or regulatory elements. We validated the library with targeted sequencing and tagged the proteome with bright fluorescent proteins to quantify the effect of heterologous transcription terminators on protein expression and to localize previously undetected proteins.


Subject(s)
Genome, Fungal , Genomic Library , Saccharomyces cerevisiae/genetics , DNA, Fungal/genetics , High-Throughput Nucleotide Sequencing , Open Reading Frames , Proteome/genetics , Proteomics , Saccharomyces cerevisiae Proteins/genetics , Sequence Analysis, DNA , Sequence Tagged Sites
7.
Nat Commun ; 5: 3574, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24705096

ABSTRACT

Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus, to specific DNA sequences called Ter. Here, we demonstrate that Tus-Ter modules also induce polar RF pausing when engineered into the Saccharomyces cerevisiae genome. This heterologous RF barrier is distinct from a number of previously characterized, protein-mediated, RF pause sites in yeast, as it is neither Tof1-dependent nor counteracted by the Rrm3 helicase. Although the yeast replisome can overcome RF pausing at Tus-Ter modules, this event triggers site-specific homologous recombination that requires the RecQ helicase, Sgs1, for its timely resolution. We propose that Tus-Ter can be utilized as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications.


Subject(s)
DNA Replication/physiology , Escherichia coli/genetics , DNA Helicases/metabolism , DNA Replication/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
8.
Exp Cell Res ; 312(19): 3835-46, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17034789

ABSTRACT

There are a growing number of proteins which are reported to reside in multiple compartments within the eukaryotic cell. However, lack of appropriate methods limits our knowledge on the true extent of this phenomenon. In this study, we demonstrate a novel application of beta-galactosidase alpha-complementation to study dual distribution of proteins in yeast cells. Using a simple colony color phenotype, we show that alpha-complementation depends on co-compartmentalization of alpha and omega fragments and exploit this to probe dual localization of proteins between the cytosol and mitochondria in yeast. The quality of our assay was assessed by analysis of the known dual targeted enzyme fumarase and several mutant derivatives, which are exclusively localized to one or the other of these subcellular compartments. Addition of the alpha fragment did not abolish the enzymatic activity of the tagged proteins nor did it affect their localization. By examining 10 yeast gene products for distribution between the cytosol and the mitochondria, we demonstrate the potential of alpha-complementation to screen the mitochondrial proteome for dual distribution. Our data indicate the distribution of two uncharacterized proteins--Bna3 and Nif3--between the cytosol and the mitochondria.


Subject(s)
Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Base Sequence , Cell Compartmentation , Cytosol/metabolism , DNA Primers/genetics , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Genetic Complementation Test , Mitochondria/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transformation, Genetic , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
9.
J Biol Chem ; 278(46): 45109-16, 2003 Nov 14.
Article in English | MEDLINE | ID: mdl-12960177

ABSTRACT

We have previously proposed that a single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae and that all fumarase translation products are targeted and processed in mitochondria before distribution. Thus, fumarase processed in mitochondria returns to the cytosol. In the current work, we (i) generated mutations throughout the coding sequence which resulted in fumarases with altered conformations that are targeted to mitochondria but have lost their ability to be distributed; (ii) showed by mass spectrometry that mature cytosolic and mitochondrial fumarase isoenzymes are identical; and (iii) showed that hsp70 chaperones in the cytosol (Ssa) and mitochondria (Ssc1) can affect fumarase distribution. The results are discussed in light of our model of targeting and distribution, which suggests that rapid folding of fumarase into an import-incompetent state provides the driving force for retrograde movement of the processed protein back to the cytosol through the translocation pore.


Subject(s)
Fumarate Hydratase/chemistry , Fumarate Hydratase/metabolism , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Biological Transport , Biotin/metabolism , Cytosol/metabolism , Electrophoresis, Polyacrylamide Gel , Endopeptidase K/pharmacology , Galactose/metabolism , Genetic Complementation Test , HSP70 Heat-Shock Proteins/genetics , Mass Spectrometry , Models, Genetic , Molecular Sequence Data , Mutation , Plasmids/metabolism , Protein Conformation , Protein Folding , Sequence Homology, Amino Acid , Subcellular Fractions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...