Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Plant J ; 116(3): 887-902, 2023 11.
Article in English | MEDLINE | ID: mdl-37548103

ABSTRACT

Floral morphology varies considerably between dicots and monocots. The ABCDE model explaining how floral organ development is controlled was formulated using core eudicots and applied to grass crops. Barley (Hordeum. vulgare) has unique floral morphogenesis. Wild barley (H. vulgare ssp. spontaneum), which is the immediate ancestor of cultivated barley (H. vulgare ssp. vulgare), contains a rich reservoir of genetic diversity. However, the wild barley genes involved in floral organ development are still relatively uncharacterized. In this study, we generated an organ-specific transcriptome atlas for wild barley floral organs. Genome-wide transcription profiles indicated that 22 838 protein-coding genes were expressed in at least one organ. These genes were grouped into seven clusters according to the similarities in their expression patterns. Moreover, 5619 genes exhibited organ-enriched expression, 677 of which were members of 47 transcription factor families. Gene ontology analyses suggested that the functions of the genes with organ-enriched expression influence the biological processes in floral organs. The co-expression regulatory network showed that the expression of 690 genes targeted by MADS-box proteins was highly positively correlated with the expression of ABCDE model genes during floral morphogenesis. Furthermore, the expression of 138 genes was specific to the wild barley OUH602 genome and not the Morex genome; most of these genes were highly expressed in the glume, awn, lemma, and palea. This study revealed the global gene expression patterns underlying floral morphogenesis in wild barley. On the basis of the study findings, a molecular mechanism controlling floral morphology in barley was proposed.


Subject(s)
Hordeum , Hordeum/genetics , Poaceae/genetics , Transcription Factors/genetics , Transcriptome/genetics , Morphogenesis/genetics , Gene Expression Regulation, Plant/genetics
2.
PLoS One ; 17(12): e0279432, 2022.
Article in English | MEDLINE | ID: mdl-36548368

ABSTRACT

Removal of excess dideoxy terminators from the sequencing mix after the enzymatic reaction is a key process affecting the dideoxy/Sanger sequencing quality. Ethanol precipitation may be the most popular clean-up method because of its low cost; however, it takes a long centrifugation time and frequently results in low quality sequence data. Commercially available clean-up kits provide high quality sequence data, while they generally have high cost. Here, we describe rapid, effective and low-cost dideoxy terminator clean-up method using a home-made magnetic beads suspension, MagNA, and magnetic separator. We found that MagNA enables rapid and efficient clean-up at ~1/100 of the cost of commercially available kits. The magnetic separator made using low-cost neodymium magnets worked well for the MagNA separation, representing a rapid, efficient and cost-effective dideoxy terminator clean-up system.


Subject(s)
Magnetics , Magnets , Base Sequence , Sequence Analysis, DNA/methods , Magnetic Phenomena
3.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613901

ABSTRACT

Sucrose nonfermenting 2 (Snf2) family proteins, as the catalytic core of ATP-dependent chromatin remodeling complexes, play important roles in nuclear processes as diverse as DNA replication, transcriptional regulation, and DNA repair and recombination. The Snf2 gene family has been characterized in several plant species; some of its members regulate flower development in Arabidopsis. However, little is known about the members of the family in barley (Hordeum vulgare). Here, 38 Snf2 genes unevenly distributed among seven chromosomes were identified from the barley (cv. Morex) genome. Phylogenetic analysis categorized them into 18 subfamilies. They contained combinations of 21 domains and consisted of 3 to 34 exons. Evolution analysis revealed that segmental duplication contributed predominantly to the expansion of the family in barley, and the duplicated gene pairs have undergone purifying selection. About eight hundred Snf2 family genes were identified from 20 barley accessions, ranging from 38 to 41 genes in each. Most of these genes were subjected to purification selection during barley domestication. Most were expressed abundantly during spike development. This study provides a comprehensive characterization of barley Snf2 family members, which should help to improve our understanding of their potential regulatory roles in barley spike development.


Subject(s)
Arabidopsis , Hordeum , Genome, Plant , Hordeum/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Multigene Family
4.
Hortic Res ; 8(1): 185, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34333550

ABSTRACT

Strawberry (Fragaria spp.) is a member of the Rosoideae subfamily in the family Rosaceae. The self-incompatibility (SI) of some diploid species is a key agronomic trait that acts as a basic pollination barrier; however, the genetic mechanism underlying SI control in strawberry remains unclear. Two candidate S-RNases (Sa- and Sb-RNase) identified in the transcriptome of the styles of the self-incompatible Fragaria viridis 42 were confirmed to be SI determinants at the S locus following genotype identification and intraspecific hybridization using selfing progenies. Whole-genome collinearity and RNase T2 family analysis revealed that only an S locus exists in Fragaria; however, none of the compatible species contained S-RNase. Although the results of interspecific hybridization experiments showed that F. viridis (SI) styles could accept pollen from F. mandshurica (self-compatible), the reciprocal cross was incompatible. Sa and Sb-RNase contain large introns, and their noncoding sequences (promotors and introns) can be transcribed into long noncoding RNAs (lncRNAs). Overall, the genus Fragaria exhibits S-RNase-based gametophytic SI, and S-RNase loss occurs at the S locus of compatible germplasms. In addition, a type of SI-independent unilateral incompatibility exists between compatible and incompatible Fragaria species. Furthermore, the large introns and neighboring lncRNAs in S-RNase in Fragaria could offer clues about S-RNase expression strategies.

5.
Ann Bot ; 127(3): 297-304, 2021 02 09.
Article in English | MEDLINE | ID: mdl-32766735

ABSTRACT

BACKGROUND AND AIMS: The brittle rachis trait is a feature of many wild grasses, particularly within the tribe Triticeae. Wild Hordeum and Triticum species form a disarticulation layer above the rachis node, resulting in the production of wedge-type dispersal units. In Aegilops longissima, only one or two of the nodes in the central portion of its rachis are brittle. In Triticeae species, the formation of a disarticulation layer above the rachis node requires the co-transcription of the two dominant and complementary genes Btr1 and Btr2. This study aims to establish whether homologues of Btr1 and/or Btr2 underlie the unusual brittle rachis phenotype observed in Ae. longissima. METHODS: Scanning electron microscopy was used to examine the disarticulation surfaces. Quantitative RT-PCR and RNA in situ hybridization experiments were used to identify gene expression in the immature inflorescence. KEY RESULTS: Analysis based on scanning electron microscopy was able to demonstrate that the disarticulation surfaces formed in the Ae. longissima rachis are morphologically indistinguishable from those formed in the rachises of wild Hordeum and Triticum species. RNA in situ hybridization showed that in the immature Ae. longissima inflorescence, the intensity of Btr1 transcription varied from high at the rachis base to low at its apex, while that of Btr2 was limited to the nodes in the central to distal portion of the rachis. CONCLUSIONS: The disarticulation pattern shown by Ae. longissima results from the limitation of Btr1 and Btr2 co-expression to nodes lying in the centre of the rachis.


Subject(s)
Aegilops , Hordeum , Disarticulation , Genes, Plant , Hordeum/genetics , Triticum/genetics
6.
Front Plant Sci ; 11: 582622, 2020.
Article in English | MEDLINE | ID: mdl-33240300

ABSTRACT

Seed dispersal among wild species belonging to the tribe Triticeae is typically achieved by the formation of a brittle rachis. The trait relies on the development of a disarticulation layer, most frequently above the rachis node (resulting in wedge type dispersal units), but in some species below the rachis node (resulting in barrel type dispersal units). The genes responsible for the former type are the complementary pair Btr1 and Btr2, while the genetic basis of the latter type has yet to be determined. Aegilops tauschii forms barrel type dispersal units and previous study showed this species lacked an intact copy of Btr1. Here it has been demonstrated that Ae. tauschii carries two of Btr2; and that Btr2 transcript is present in a region below the rachis node where the abscission zone forms. The implication is that in this species, the Btr2 product is involved in the formation of barrel type dispersal units.

7.
Cytogenet Genome Res ; 160(9): 554-564, 2020.
Article in English | MEDLINE | ID: mdl-33171461

ABSTRACT

Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that Menolird18, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in Cucumis melo, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, Menolird18 was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of Menolird18 were found in centromeric and rDNA regions of mitotic chromosomes suggests that Menolird18 is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of Menolird18 in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (C. melo) and cucumber (C. sativus) genomes.


Subject(s)
Cucumis melo/genetics , Cucumis sativus/genetics , Retroelements , Centromere/genetics , Centromere/ultrastructure , Chromosome Mapping , Chromosomes, Plant/genetics , DNA, Plant/genetics , Evolution, Molecular , RNA, Plant/genetics , RNA, Ribosomal, 18S/genetics , Repetitive Sequences, Nucleic Acid , Species Specificity
8.
Plant Methods ; 16: 124, 2020.
Article in English | MEDLINE | ID: mdl-32944062

ABSTRACT

BACKGROUND: The determination of pollen number is important in evolutionary, agricultural, and medical studies. Tree species of the Cupressaceae family cause serious pollinosis worldwide. Although Japanese cedar (Cryptomeria japonica) is the most important forestry species in Japan, it is also the biggest cause of pollinosis in the country. Japanese cedar trees have been selected for growth speed and superior morphological traits and then cloned. These clones may vary in their pollen production, but there has been little research on how many pollen grains are produced by a single male strobilus (flower). A recently reported method for counting pollen number with a cell counter was applicable to Arabidopsis species and wheat, but was not suitable for Japanese cedar because the strobilus does not open with heating (e.g. 60 °C, overnight). RESULTS: Here, we report an improved pollen counting method for Japanese cedar using a precise and rapid cell counter in combination with home-made mesh columns. The male strobilus was gently crushed using a pestle. Large and small debris were then removed using 100- and 20-µm mesh columns, respectively. We successfully detected pollen sizes and numbers that differed between two clones using this method. CONCLUSIONS: This improved method is not only suitable for counting pollen from Japanese cedar, but could also be applied to other species of the Cupressaceae family with hard scale tissue covering the pollen. Moreover, this method could be applied to a broader range of plant species, such as wheat, because there is no need to wait for anthesis and debris can be removed efficiently.

9.
Front Plant Sci ; 11: 1000, 2020.
Article in English | MEDLINE | ID: mdl-32793251

ABSTRACT

In many non-cultivated angiosperm species, seed dispersal is facilitated by the shattering of the seed head at maturity; in the Triticeae tribe, to which several of the world's most important cereals belong, shattering takes the form of a disarticulation of the rachis. The products of the genes Btr1 and Btr2 are both required for disarticulation to occur above the rachis nodes within the genera Hordeum (barley) and Triticum/Aegilops (wheat). Here, it has been shown that both Btr1 and Btr2 are specific to the Triticeae tribe, although likely paralogs (Btr1-like and Btr2-like) are carried by the family Poaceae including Triticeae. Aegilops tauschii (the donor of the bread wheat D genome) lacks a copy of Btr1 and disarticulation in this species occurs below, rather than above the rachis node; thus, the product of Btr1 appears to be required for disarticulation to occur above the rachis node.

10.
PLoS One ; 15(1): e0227578, 2020.
Article in English | MEDLINE | ID: mdl-31945109

ABSTRACT

Centromeres are prerequisite for accurate segregation and are landmarks of primary constrictions of metaphase chromosomes in eukaryotes. In melon, high-copy-number satellite DNAs (SatDNAs) were found at various chromosomal locations such as centromeric, pericentromeric, and subtelomeric regions. In the present study, utilizing the published draft genome sequence of melon, two new SatDNAs (CmSat162 and CmSat189) of melon were identified and their chromosomal distributions were confirmed using fluorescence in situ hybridization. DNA probes prepared from these SatDNAs were successfully hybridized to melon somatic and meiotic chromosomes. CmSat162 was located on 12 pairs of melon chromosomes and co-localized with the centromeric repeat, Cmcent, at the centromeric regions. In contrast, CmSat189 was found to be located not only on centromeric regions but also on specific regions of the chromosomes, allowing the characterization of individual chromosomes of melon. It was also shown that these SatDNAs were transcribed in melon. These results suggest that CmSat162 and CmSat189 might have some functions at the centromeric regions.


Subject(s)
Centromere/genetics , Cucumis melo/genetics , Repetitive Sequences, Nucleic Acid , DNA, Plant/genetics , Genome, Plant/genetics , Genomics , In Situ Hybridization, Fluorescence , Transcription, Genetic
11.
Mol Cytogenet ; 11: 32, 2018.
Article in English | MEDLINE | ID: mdl-29760782

ABSTRACT

BACKGROUND: Detailed karyotyping using metaphase chromosomes in melon (Cucumis melo L.) remains a challenge because of their small chromosome sizes and poor stainability. Prometaphase chromosomes, which are two times longer and loosely condensed, provide a significantly better resolution for fluorescence in situ hybridization (FISH) than metaphase chromosomes. However, suitable method for acquiring prometaphase chromosomes in melon have been poorly investigated. RESULTS: In this study, a modified Carnoy's solution II (MC II) [6:3:1 (v/v) ethanol: acetic acid: chloroform] was used as a pretreatment solution to obtain prometaphase chromosomes. We demonstrated that the prometaphase chromosomes obtained using the MC II method are excellent for karyotyping and FISH analysis. We also observed that a combination of MC II and the modified air dry (ADI) method provides a satisfactory meiotic pachytene chromosome preparation with reduced cytoplasmic background and clear chromatin spreads. Moreover, we demonstrated that pachytene and prometaphase chromosomes of melon and Abelia × grandiflora generate significantly better FISH images when prepared using the method described. We confirmed, for the first time, that Abelia × grandiflora has pairs of both strong and weak 45S ribosomal DNA signals on the short arms of their metaphase chromosomes. CONCLUSION: The MC II and ADI method are simple and effective for acquiring prometaphase and pachytene chromosomes with reduced cytoplasm background in plants. Our methods provide high-resolution FISH images that can help accelerate molecular cytogenetic research in plants.

12.
Breed Sci ; 66(1): 116-21, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27069396

ABSTRACT

Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars.

13.
Breed Sci ; 66(5): 838-844, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28163600

ABSTRACT

Genetic variation in Jatropha curcas, a prospective biodiesel plant, is limited, and interspecific hybridization needed for its genetic improvement. Progeny from interspecific crosses between J. curcas and Jatropha integerrima can be used to improve agronomic characters and to increase oil content and yield. However, these hybrids have not been characterized cytologically. The present study was aimed at the analysis of chromosome behavior during meiosis and chromosome composition of S1 plants derived from an interspecific F1 hybrid using genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH). Bivalents that formed as a result of interspecific pairing were frequently observed, suggesting the presence of homoeologous chromosomes from the two species. Almost half of microspores were derived from the reduction division; GISH analysis indicated random transmission of the parent chromosomes to microspores. Male fertility measured as pollen staining with acetocarmine was 48.4%. In contrast, GISH analysis of S1 plants revealed preferential transmission of J. curcas chromosomes. We also found segment exchange between chromosomes of the two species (interspecific translocation) by GISH and FISH analyses. Introgression of J. integerrima chromosome segments into the J. curcas genome would help to improve Jatropha cultivars for mass production.

14.
Breed Sci ; 64(2): 176-82, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24987304

ABSTRACT

As the fruits of loquat (Eriobotrya japonica, 2n = 2x = 34) carry large seeds, the breeding of seedless loquat has long been a goal. The recent creation of triploid cultivars (2n = 3x = 51) and the application of gibberellins allow commercial production of seedless loquat, but the possibility of seed formation in triploid loquats has not been carefully investigated. Through crossing experiments and cytological observations of meiosis and pollen tube growth, we found that the triploid line 3N-N28 was essentially self-sterile, but developed seeds on pollination with pollen from diploid cultivars at rates of up to 5.5%. Almost half of the seedlings survived to 5 months, and carried diploid (2n = 34), tetraploid (2n = 68), or aneuploid chromosome numbers. Our results suggest that triploid loquat cultivars might retain the risk of seed formation. Protection from pollination by diploid cultivars or the development of new triploid cultivars will be necessary to ensure the production of seedless loquat fruits.

15.
PLoS One ; 9(5): e97642, 2014.
Article in English | MEDLINE | ID: mdl-24847858

ABSTRACT

Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a single polymorphic S locus. The S locus contains at least two genes, S-RNase and F-box protein encoding gene SLF/SFB/SFBB that control pistil and pollen specificity, respectively. Generally, the F-box protein forms an E3 ligase complex, SCF complex with Skp1, Cullin1 (CUL1) and Rbx1, however, in Petunia inflata, SBP1 (S-RNase binding protein1) was reported to play the role of Skp1 and Rbx1, and form an SCFSLF-like complex for ubiquitination of non-self S-RNases. On the other hand, in Petunia hybrida and Petunia inflata of Solanaceae, Prunus avium and Pyrus bretschneideri of Rosaceae, SSK1 (SLF-interacting Skp1-like protein1) is considered to form the SCFSLF/SFB complex. Here, we isolated pollen-expressed apple homologs of SSK1 and CUL1, and named MdSSK1, MdCUL1A and MdCUL1B. MdSSK1 was preferentially expressed in pollen, but weakly in other organs analyzed, while, MdCUL1A and MdCUL1B were almost equally expressed in all the organs analyzed. MdSSK1 transcript abundance was significantly (>100 times) higher than that of MdSBP1. In vitro binding assays showed that MdSSK1 and MdSBP1 interacted with MdSFBB1-S9 and MdCUL1, and MdSFBB1-S9 interacted more strongly with MdSSK1 than with MdSBP1. The results suggest that both MdSSK1-containing SCFSFBB1 and MdSBP1-containing SCFSFBB1-like complexes function in pollen of apple, and the former plays a major role.


Subject(s)
Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/metabolism , Amino Acid Sequence , Gene Expression Regulation, Plant , Genetic Loci/genetics , Malus/physiology , Molecular Sequence Data , Plant Proteins/chemistry , Pollen/genetics , Self-Incompatibility in Flowering Plants , Sequence Homology, Nucleic Acid
16.
New Phytol ; 197(3): 939-948, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23293955

ABSTRACT

Barley (Hordeum vulgare) spikes are developmentally switched from two-rowed to six-rowed by a single recessive gene, six-rowed spike 1 (vrs1), which encodes a homeodomain-leucine zipper I class transcription factor. Vrs1 is a paralog of HvHox2 and both were generated by duplication of an ancestral gene. HvHox2 is conserved among cereals, whereas Vrs1 acquired its current function during the evolution of barley. It was unclear whether divergence of expression pattern or protein function accounted for the functionalization of Vrs1. Here, we conducted a comparative analysis of protein functions and gene expression between HvHox2 and Vrs1 to clarify the functionalization mechanism. We revealed that the transcriptional activation activity of HvHOX2 and VRS1 was conserved. In situ hybridization analysis showed that HvHox2 is localized in vascular bundles in developing spikes, whereas Vrs1 is expressed exclusively in the pistil, lemma, palea and lodicule of lateral spikelets. The transcript abundance of Vrs1 was > 10-fold greater than that of HvHox2 during the pistil developmental stage, suggesting that the essential function of Vrs1 is to inhibit gynoecial development. We demonstrated the quantitative function of Vrs1 using RNAi transgenic plants and Vrs1 expression variants. Expression analysis of six-rowed spike mutants that are nonallelic to vrs1 showed that Vrs1 expression was up-regulated by Vrs4, whereas HvHox2 expression was not. These data demonstrate that the divergence of gene expression pattern contributed to the neofunctionalization of Vrs1.


Subject(s)
Gene Duplication , Gene Expression Regulation, Plant , Homeodomain Proteins/physiology , Hordeum/genetics , Plant Proteins/physiology , Transcription Factors/physiology , Cell Nucleus/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Hordeum/metabolism , In Situ Hybridization , Leucine Zippers , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Structure, Tertiary , RNA Interference , RNA, Messenger/analysis , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Two-Hybrid System Techniques , Up-Regulation
17.
Breed Sci ; 62(2): 133-41, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23136524

ABSTRACT

Grain size is an important yield component in rice, however, genes controlling the trait remain poorly understood. Previously, we have shown that an antagonistic pair of basic helix-loop-helix (bHLH) proteins, POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1) and ANTAGONIST OF PGL1 (APG), is involved in controlling rice grain length. Here, we report the involvement of another atypical bHLH protein gene, POSITIVE REGULATOR OF GRAIN LENGTH 2 (PGL2), in the regulation of rice grain length. Over-expression of PGL2 in the lemma/palea increased grain length and weight in correlation with the level of transgene expression. Observation of the inner epidermal cells of lemma of PGL2-overexpressing lines revealed that the long grain size is caused by an increase in cell length. PGL2 interacts with a typical bHLH protein APG, a negative regulator of rice grain length and weight, in vitro and in vivo. It was reported that overexpression of BU1 (BRASSINOSTEROID UPREGULATED 1), the closest homolog of PGL2, caused an increase in grain length. However, we detected no interaction between BU1 and APG. These findings suggest that PGL2 and PGL1 redundantly suppress the function of APG by forming heterodimers to positively regulate the rice grain length, while the pathway through which BU1, the closest homolog of PGL2, controls grain length is independent of APG.

18.
J Exp Bot ; 63(13): 4983-90, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22760470

ABSTRACT

Gametophytic self-incompatibility (GSI) is controlled by a complex S locus containing the pistil determinant S-RNase and pollen determinant SFB/SLF. Tight linkage of the pistil and pollen determinants is necessary to guarantee the self-incompatibility (SI) function. However, multiple probable pollen determinants of apple and Japanese pear, SFBBs (S locus F-box brothers), exist in each S haplotype, and how these multiple genes maintain the SI function remains unclear. It is shown here by high-resolution fluorescence in situ hybridization (FISH) that SFBB genes of the apple S9 haplotype are physically linked to the S9-RNase gene, and the S locus is located in the subtelomeric region. FISH analyses also determined the relative order of SFBB genes and S-RNase in the S9 haplotype, and showed that gene order differs between the S9 and S3 haplotypes. Furthermore, it is shown that the apple S locus is located in a knob-like large heterochromatin block where DNA is highly methylated. It is proposed that interhaplotypic heterogeneity and the heterochromatic nature of the S locus help to suppress recombination at the S locus in apple.


Subject(s)
F-Box Proteins/genetics , Heterochromatin/genetics , Malus/genetics , Recombination, Genetic/genetics , Ribonucleases/genetics , Self-Incompatibility in Flowering Plants/genetics , Chromosomes, Artificial, Bacterial , Chromosomes, Plant/genetics , DNA Methylation , Euchromatin/genetics , Flowers/genetics , Flowers/physiology , Genetic Heterogeneity , Genetic Linkage , Haplotypes , In Situ Hybridization, Fluorescence , Malus/physiology , Pachytene Stage , Plant Proteins/genetics
19.
PLoS One ; 7(2): e31325, 2012.
Article in English | MEDLINE | ID: mdl-22363621

ABSTRACT

Grain size is a major yield component in rice, and partly controlled by the sizes of the lemma and palea. Molecular mechanisms controlling the sizes of these organs largely remain unknown. In this study, we show that an antagonistic pair of basic helix-loop-helix (bHLH) proteins is involved in determining rice grain length by controlling cell length in the lemma/palea. Overexpression of an atypical bHLH, named POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1), in lemma/palea increased grain length and weight in transgenic rice. PGL1 is an atypical non-DNA-binding bHLH and assumed to function as an inhibitor of a typical DNA-binding bHLH through heterodimerization. We identified the interaction partner of PGL1 and named it ANTAGONIST OF PGL1 (APG). PGL1 and APG interacted in vivo and localized in the nucleus. As expected, silencing of APG produced the same phenotype as overexpression of PGL1, suggesting antagonistic roles for the two genes. Transcription of two known grain-length-related genes, GS3 and SRS3, was largely unaffected in the PGL1-overexpressing and APG-silenced plants. Observation of the inner epidermal cells of lemma revealed that are caused by increased cell length. PGL1-APG represents a new grain length and weight-controlling pathway in which APG is a negative regulator whose function is inhibited by PGL1.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomass , Oryza/anatomy & histology , Plant Proteins/metabolism , Seeds/anatomy & histology , Brassinosteroids/metabolism , Genes, Plant/genetics , Microscopy, Confocal , Models, Biological , Oryza/genetics , Phenotype , Plant Cells/metabolism , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plants, Genetically Modified , Polymerase Chain Reaction , Protein Binding , Protein Transport , Quantitative Trait, Heritable , RNA Interference , Seeds/genetics , Suppression, Genetic
20.
Breed Sci ; 62(4): 348-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23341749

ABSTRACT

Japanese pear (Pyrus pyrifolia) exhibits gametophytic self-incompatibility (GSI) controlled by a complex and multiallelic S locus. The pistil-part product of the S locus is the polymorphic ribonuclease, S-RNase. Information on S-genotypes is important for the production and breeding of Japanese pears. Molecular analyses of S-genotypes of Japanese pear have been conducted with the CAPS (cleaved amplified polymorphic sequence) system; PCR amplification of S-RNase fragments by a common primer pair followed by digestion with restriction enzymes each of which cleaves a specific S haplotype. Here, we show that the separation of S-RNase fragments by polyacrylamide gel electrophoresis (PAGE) distinguishes four out of nine S haplotypes of Japanese pear without restriction digestion. S(3)-, S(5)-, S(6)- and S(8)-RNases were identified as distinct bands by PAGE. S(3)- and S(5)-RNases were separated by PAGE despite their identical fragment sizes. Using this system, three Japanese pear lines with unknown S-genotypes were analyzed. The newly determined S-genotypes of the lines were confirmed by CAPS analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...