Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Astrobiology ; 24(5): 559-569, 2024 May.
Article in English | MEDLINE | ID: mdl-38768432

ABSTRACT

Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.


Subject(s)
Earth, Planet , Origin of Life , Ultraviolet Rays , Adenine/chemistry , Prebiotics/analysis , Water/chemistry
2.
Chem Sci ; 15(6): 2158-2166, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38332835

ABSTRACT

Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT[double bond, length as m-dash]T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence T[double bond, length as m-dash]TAG promotes self-repair with higher quantum yields (0.58 ± 0.23%) than GAT[double bond, length as m-dash]T (0.44 ± 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 ± 13% for GAT[double bond, length as m-dash]T and at 40 ± 16% for T[double bond, length as m-dash]TAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-˙G+˙ charge transfer state in the dominant conformers of the T[double bond, length as m-dash]TAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the T[double bond, length as m-dash]TAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.

3.
Sci Adv ; 10(1): eadg8826, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170780

ABSTRACT

The clouds of Venus are believed to be composed of sulfuric acid (H2SO4) and minor constituents including iron-bearing compounds, and their respective concentrations vary with height in the thick Venusian atmosphere. This study experimentally investigates possible iron-bearing mineral phases that are stable under the unique conditions within Venusian clouds. Our results demonstrate that ferric iron can react with sulfuric acid to form two mineral phases: rhomboclase [(H5O2)Fe(SO4)2·3H2O] and acid ferric sulfate [(H3O)Fe(SO4)2]. A combination of these two mineral phases and dissolved Fe3+ in varying concentrations of sulfuric acid are shown to be good candidates for explaining the 200- to 300-nm and 300- to 500-nm features of the reported unknown UV absorber. We, therefore, hypothesize a rich and largely unexplored heterogeneous chemistry in the cloud droplets of Venus that has a large effect on the optical properties of the clouds and the behavior of trace gas species throughout Venus's atmosphere.

4.
Chem Commun (Camb) ; 59(91): 13603-13606, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37899697

ABSTRACT

Nucleic acids can be damaged by ultraviolet (UV) irradiation, forming structural photolesions such as cyclobutane-pyrimidine-dimers (CPD). In modern organisms, sophisticated enzymes repair CPD lesions in DNA, but to our knowledge, no RNA-specific enzymes exist for CPD repair. Here, we show for the first time that RNA can protect itself from photolesions by an intrinsic UV-induced self-repair mechanism. This mechanism, prior to this study, has exclusively been observed in DNA and is based on charge transfer from CPD-adjacent bases. In a comparative study, we determined the quantum yields of the self-repair of the CPD-containing RNA sequence, GAU = U to GAUU (0.23%), and DNA sequence, d(GAT = T) to d(GATT) (0.44%), upon 285 nm irradiation via UV/Vis spectroscopy and HPLC analysis. After several hours of irradiation, a maximum conversion yield of ∼16% for GAU = U and ∼33% for d(GAT = T) was reached. We examined the dynamics of the intermediate charge transfer (CT) state responsible for the self-repair with ultrafast UV pump - IR probe spectroscopy. In the dinucleotides GA and d(GA), we found comparable quantum yields of the CT state of ∼50% and lifetimes on the order of several hundred picoseconds. Charge transfer in RNA strands might lead to reactions currently not considered in RNA photochemistry and may help understanding RNA damage formation and repair in modern organisms and viruses. On the UV-rich surface of the early Earth, these self-stabilizing mechanisms likely affected the selection of the earliest nucleotide sequences from which the first organisms may have developed.


Subject(s)
DNA Repair , Pyrimidine Dimers , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/genetics , Pyrimidine Dimers/radiation effects , RNA , DNA/chemistry , Ultraviolet Rays , DNA Damage
5.
Nat Commun ; 14(1): 6351, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816811

ABSTRACT

Homochirality is a hallmark of life on Earth. To achieve and maintain homochirality within a prebiotic network, the presence of an environmental factor acting as a chiral agent and providing a persistent chiral bias to prebiotic chemistry is highly advantageous. Magnetized surfaces are prebiotically plausible chiral agents due to the chiral-induced spin selectivity (CISS) effect, and they were utilized to attain homochiral ribose-aminooxazoline (RAO), an RNA precursor. However, natural magnetic minerals are typically weakly magnetized, necessitating mechanisms to enhance their magnetization for their use as effective chiral agents. Here, we report the magnetization of magnetic surfaces by crystallizing enantiopure RAO, whereby chiral molecules induce a uniform surface magnetization due to the CISS effect, which spreads across the magnetic surface akin to an avalanche. Chirality-induced avalanche magnetization enables a feedback between chiral molecules and magnetic surfaces, which can amplify a weak magnetization and allow for highly efficient spin-selective processes on magnetic minerals.


Subject(s)
Avalanches , RNA Precursors , Ferrosoferric Oxide , Stereoisomerism , Ribose/chemistry
6.
J Chem Phys ; 159(6)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37551802

ABSTRACT

Biological systems are homochiral, raising the question of how a racemic mixture of prebiotically synthesized biomolecules could attain a homochiral state at the network level. Based on our recent results, we aim to address a related question of how chiral information might have flowed in a prebiotic network. Utilizing the crystallization properties of the central ribonucleic acid (RNA) precursor known as ribose-aminooxazoline (RAO), we showed that its homochiral crystals can be obtained from its fully racemic solution on a magnetic mineral surface due to the chiral-induced spin selectivity (CISS) effect [Ozturk et al., arXiv:2303.01394 (2023)]. Moreover, we uncovered a mechanism facilitated by the CISS effect through which chiral molecules, such as RAO, can uniformly magnetize such surfaces in a variety of planetary environments in a persistent manner [Ozturk et al., arXiv:2304.09095 (2023)]. All this is very tantalizing because recent experiments with tRNA analogs demonstrate high stereoselectivity in the attachment of L-amino acids to D-ribonucleotides, enabling the transfer of homochirality from RNA to peptides [Wu et al., J. Am. Chem. Soc. 143, 11836 (2021)]. Therefore, the biological homochirality problem may be reduced to ensuring that a single common RNA precursor (e.g., RAO) can be made homochiral. The emergence of homochirality at RAO then allows for the chiral information to propagate through RNA, then to peptides, and ultimately through enantioselective catalysis to metabolites. This directionality of the chiral information flow parallels that of the central dogma of molecular biology-the unidirectional transfer of genetic information from nucleic acids to proteins [F. H. Crick, in Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules, edited by F. K. Sanders (Cambridge University Press, Cambridge, 1958), pp. 138-163; and F. Crick, Nature 227, 561 (1970)].


Subject(s)
Peptides , Proteins , Humans , Peptides/chemistry , Stereoisomerism , Amino Acids/chemistry , RNA
7.
Sci Adv ; 9(23): eadg8274, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37285423

ABSTRACT

Homochirality is a signature of life on Earth, yet its origins remain an unsolved puzzle. Achieving homochirality is essential for a high-yielding prebiotic network capable of producing functional polymers like RNA and peptides on a persistent basis. Because of the chiral-induced spin selectivity effect, which established a strong coupling between electron spin and molecular chirality, magnetic surfaces can act as chiral agents and be templates for the enantioselective crystallization of chiral molecules. Here, we studied the spin-selective crystallization of racemic ribo-aminooxazoline (RAO), an RNA precursor, on magnetite (Fe3O4) surfaces, achieving an unprecedented enantiomeric excess (ee) of about 60%. Following the initial enrichment, we then obtained homochiral (100% ee) crystals of RAO after a subsequent crystallization. Our results demonstrate a prebiotically plausible way of achieving system-level homochirality from completely racemic starting materials, in a shallow-lake environment on early Earth where sedimentary magnetite deposits are expected to be common.


Subject(s)
Ferrosoferric Oxide , RNA Precursors , Crystallization , RNA/chemistry , Stereoisomerism , Electrons
8.
Proc Natl Acad Sci U S A ; 119(28): e2204765119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35787048

ABSTRACT

Life as we know it is homochiral, but the origins of biological homochirality on early Earth remain elusive. Shallow closed-basin lakes are a plausible prebiotic environment on early Earth, and most are expected to have significant sedimentary magnetite deposits. We hypothesize that ultraviolet (200- to 300-nm) irradiation of magnetite deposits could generate hydrated spin-polarized electrons sufficient to induce enantioselective prebiotic chemistry. Such electrons are potent reducing agents that drive reduction reactions where the spin polarization direction can enantioselectively alter the reaction kinetics. Our estimate of this chiral bias is based on the strong effective spin-orbit coupling observed in the chiral-induced spin selectivity (CISS) effect, as applied to energy differences in reduction reactions for different isomers. In the original CISS experiments, spin-selective electron transmission through a monolayer of double-strand DNA molecules is observed at room temperature-indicating a strong coupling between molecular chirality and electron spin. We propose that the chiral symmetry breaking due to the CISS effect, when applied to reduction chemistry, can induce enantioselective synthesis on the prebiotic Earth and thus facilitate the homochiral assembly of life's building blocks.


Subject(s)
Electrons , Ferrosoferric Oxide , DNA/chemistry , Earth, Planet , Stereoisomerism
9.
Astrobiology ; 22(3): 242-262, 2022 03.
Article in English | MEDLINE | ID: mdl-34939825

ABSTRACT

Ultraviolet (UV) light plays a key role in surficial theories of the origin of life, and numerous studies have focused on constraining the atmospheric transmission of UV radiation on early Earth. However, the UV transmission of the natural waters in which origins-of-life chemistry (prebiotic chemistry) is postulated to have occurred is poorly constrained. In this work, we combine laboratory and literature-derived absorption spectra of potential aqueous-phase prebiotic UV absorbers with literature estimates of their concentrations on early Earth to constrain the prebiotic UV environment in marine and terrestrial natural waters, and we consider the implications for prebiotic chemistry. We find that prebiotic freshwaters were largely transparent in the UV, contrary to assumptions in some models of prebiotic chemistry. Some waters, such as high-salinity waters like carbonate lakes, may be deficient in shortwave (≤220 nm) UV flux. More dramatically, ferrous waters can be strongly UV-shielded, particularly if the Fe2+ forms highly UV-absorbent species such as FeCN64-. Such waters may be compelling venues for UV-averse origin-of-life scenarios but are unfavorable for some UV-dependent prebiotic chemistries. UV light can trigger photochemistry even if attenuated through photochemical transformations of the absorber (e.g., eaq- production from halide irradiation), which may have both constructive and destructive effects for prebiotic syntheses. Prebiotic chemistries that invoke waters that contain such absorbers must self-consistently account for the chemical effects of these transformations. The speciation and abundance of Fe2+ in natural waters on early Earth is a major uncertainty and should be prioritized for further investigation, as it played a major role in UV transmission in prebiotic natural waters.


Subject(s)
Earth, Planet , Carbonates , Photochemistry , Ultraviolet Rays
10.
Nat Chem ; 13(11): 1126-1132, 2021 11.
Article in English | MEDLINE | ID: mdl-34635812

ABSTRACT

Carbon dioxide (CO2) is the major carbonaceous component of many planetary atmospheres, which includes the Earth throughout its history. Carbon fixation chemistry-which reduces CO2 to organics, utilizing hydrogen as the stoichiometric reductant-usually requires high pressures and temperatures, and the yields of products of potential use to nascent biology are low. Here we demonstrate an efficient ultraviolet photoredox chemistry between CO2 and sulfite that generates organics and sulfate. The chemistry is initiated by electron photodetachment from sulfite to give sulfite radicals and hydrated electrons, which reduce CO2 to its radical anion. A network of reactions that generates citrate, malate, succinate and tartrate by irradiation of glycolate in the presence of sulfite was also revealed. The simplicity of this carboxysulfitic chemistry and the widespread occurrence and abundance of its feedstocks suggest that it could have readily taken place on the surfaces of rocky planets. The availability of the carboxylate products on early Earth could have driven the development of central carbon metabolism before the advent of biological CO2 fixation.

11.
J Phys Chem Lett ; 12(28): 6707-6713, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34260253

ABSTRACT

Substitution of exocyclic oxygen with sulfur was shown to substantially influence the properties of RNA/DNA bases, which are crucial for prebiotic chemistry and photodynamic therapies. Upon UV irradiation, thionucleobases were shown to efficiently populate triplet excited states and can be involved in characteristic photochemistry or generation of singlet oxygen. Here, we show that the photochemistry of a thionucleobase can be considerably modified in a nucleoside, that is, by the presence of ribose. Our transient absorption spectroscopy experiments demonstrate that thiocytosine exhibits 5 times longer excited-state lifetime and different excited-state absorption features than thiocytidine. On the basis of accurate quantum chemical simulations, we assign these differences to the dominant population of a shorter-lived triplet nπ* state in the nucleoside and longer-lived triplet ππ* states in the nucleobase. This explains the distinctive photoanomerziation of thiocytidine and indicates that the nucleoside will be a less efficient phototherapeutic agent with regard to singlet oxygen generation.


Subject(s)
Nucleosides/chemistry , Photochemical Processes , Ribose/chemistry , Sulfur/chemistry
12.
ACS Earth Space Chem ; 5(2): 239-246, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-36317066

ABSTRACT

UV light has been invoked as a source of energy for driving prebiotic chemistry, but such high energy photons are also known to cause damage to biomolecules and their precursors. One potential mechanism for increasing the lifetime of UV-photounstable molecules is to invoke a protection or shielding mechanism. UV shielding could either occur by the molecule in question itself (self-shielding) or by the presence of other UV-absorbing molecules. We investigate and illustrate these two shielding mechanisms as means of increasing the lifetime of 2-aminooxazole (AO), a prebiotic precursor molecule moderately susceptible to UV photodamage, with an expected half-life of 7 h on the surface of the early Earth. AO can be protected by being present in high concentrations, such that it self-shields. AO can similarly be protected by the presence of UV-absorbing nucleosides; the degree of protection depends on the concentration and identity of the nucleoside. The purine nucleosides (A, G, and I) confer more protection than the pyrimidines (C and U). We find that 0.1 mM purine ribonucleosides affords AO about the same protection as 1 mM AO self-shielding, corresponding to a lifetime enhancement of 2-3×. This suggests that only a modest yield of nucleosides can potentially allow for protection of UV photounstable molecules, and therefore this could be a plausible mechanism for protecting sensitive molecules while prebiotic synthesis is occurring simultaneously. Our findings suggest that both synthetic and degradative reactions can proceed at the same time, given various degrees of shielding.

13.
Astrobiology ; 20(7): 878-888, 2020 07.
Article in English | MEDLINE | ID: mdl-32267736

ABSTRACT

A previously proposed synthesis of pyrimidine ribonucleotides makes use of ultraviolet (UV) light to convert ß-d-ribocytidine-2',3'-cyclic phosphate to ß-d-ribouridine-2',3'-cyclic phosphate, while simultaneously selectively degrading synthetic byproducts. Past studies of the photochemical reactions of pyrimidines have employed mercury arc lamps, characterized by narrowband emission centered at 254 nm, which is not representative of the UV environment of the early Earth. To further assess this process under more realistic circumstances, we investigated the wavelength dependence of the UV-driven conversion of ß-d-ribocytidine-2',3'-cyclic phosphate to ß-d-ribouridine-2',3'-cyclic phosphate. We used constraints provided by planetary environments to assess the implications for pyrimidine nucleotides on the early Earth. We found that the wavelengths of light (255-285 nm) that most efficiently drive the deamination of ß-d-ribocytidine-2',3'-cyclic phosphate to ß-d-ribouridine-2',3'-cyclic phosphate are accessible on planetary surfaces such as those of the Hadean-Archaean Earth for CO2-N2-dominated atmospheres. However, continued irradiation could eventually lead to low levels of ribocytidine in a low-temperature, highly irradiated environment, if production rates are slow.


Subject(s)
Cytidine/chemistry , Earth, Planet , Photochemical Processes/radiation effects , Ribonucleotides/chemistry , Ultraviolet Rays , Atmosphere/chemistry , Cytidine/radiation effects , Deamination/radiation effects , Ribonucleotides/radiation effects
14.
Sci Adv ; 6(6): eaax3419, 2020 02.
Article in English | MEDLINE | ID: mdl-32076638

ABSTRACT

We advocate an integrative approach between laboratory experiments in prebiotic chemistry and geologic, geochemical, and astrophysical observations to help assemble a robust chemical pathway to life that can be reproduced in the laboratory. The cyanosulfidic chemistry scenario described here was developed by such an integrative iterative process. We discuss how it maps onto evolving planetary surface environments on early Earth and Mars and the value of comparative planetary evolution. The results indicate that Mars can offer direct evidence for geochemical conditions similar to prebiotic Earth, whose early record has been erased. The Jezero crater is now the chosen landing site for NASA's Mars 2020 rover, making this an extraordinary opportunity for a breakthrough in understanding life's origins.

15.
Chem Commun (Camb) ; 55(70): 10388-10391, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31380533

ABSTRACT

Three related molecules in the 2-aminoazole family are potentially important for prebiotic chemistry: 2-aminooxazole, 2-aminoimidazole, and 2-aminothiazole, which can provide critical functions as an intermediate in nucleotide synthesis, a nucleotide activating agent, and a selective agent, respectively. Here, we examine the wavelength-dependent photodegradation of these three molecules under mid-range UV light (210-290 nm). We then assess the implications of the observed degradation rates for the proposed prebiotic roles of these compounds. We find that all three 2-aminoazoles degrade under UV light, with half lives ranging from ≈7-100 hours under a solar-like spectrum. 2-Aminooxazole is the least photostable, while 2-aminoimidazole is the most photostable. The relative photostabilities are consistent with the order in which these molecules would be used prebiotically: AO is used first to build nucleotides and AI is used last to activate them.

16.
Proc Natl Acad Sci U S A ; 116(20): 9723-9728, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31036661

ABSTRACT

The radii and orbital periods of 4,000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures. However, an important question about the composition of planets ranging from 2 to 4 Earth radii (R⊕) still remains. They may either have a rocky core enveloped in a H2-He gaseous envelope (gas dwarfs) or contain a significant amount of multicomponent, H2O-dominated ices/fluids (water worlds). Planets in the mass range of 10-15 M⊕, if half-ice and half-rock by mass, have radii of 2.5 R⊕, which exactly match the second peak of the exoplanet radius bimodal distribution. Any planet in the 2- to 4-R⊕ range requires a gas envelope of at most a few mass percentage points, regardless of the core composition. To resolve the ambiguity of internal compositions, we use a growth model and conduct Monte Carlo simulations to demonstrate that many intermediate-size planets are "water worlds."

17.
Nat Commun ; 9(1): 4073, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30287815

ABSTRACT

Prebiotic nucleotide synthesis is crucial to understanding the origins of life on Earth. There are numerous candidates for life's first nucleic acid, however, currently no prebiotic method to selectively and concurrently synthesise the canonical Watson-Crick base-pairing pyrimidine (C, U) and purine (A, G) nucleosides exists for any genetic polymer. Here, we demonstrate the divergent prebiotic synthesis of arabinonucleic acid (ANA) nucleosides. The complete set of canonical nucleosides is delivered from one reaction sequence, with regiospecific glycosidation and complete furanosyl selectivity. We observe photochemical 8-mercaptopurine reduction is efficient for the canonical purines (A, G), but not the non-canonical purine inosine (I). Our results demonstrate that synthesis of ANA may have been facile under conditions that comply with plausible geochemical environments on early Earth and, given that ANA is capable of encoding RNA/DNA compatible information and evolving to yield catalytic ANA-zymes, ANA may have played a critical role during the origins of life.


Subject(s)
Arabinonucleosides/biosynthesis , Origin of Life , Mercaptopurine , Oxidation-Reduction , Photochemical Processes
18.
Chem Commun (Camb) ; 54(44): 5566-5569, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29761807

ABSTRACT

Photoredox cycling during UV irradiation of ferrocyanide ([FeII(CN)6]4-) in the presence of stoichiometric sulfite (SO32-) is shown to be an extremely effective way to drive the reductive homologation of hydrogen cyanide (HCN) to simple sugars and precursors of hydroxy acids and amino acids.

19.
Astrobiology ; 18(8): 1023-1040, 2018 08.
Article in English | MEDLINE | ID: mdl-29627997

ABSTRACT

A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS-, HSO3-, SO32-) available in surficial aquatic reservoirs on early Earth due to outgassing of SO2 and H2S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO2-derived anions, but not H2S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species.


Subject(s)
Earth, Planet , Evolution, Chemical , Origin of Life , Sulfides/analysis , Anions , Hydrogen Sulfide/analysis , Hydrogen-Ion Concentration , Sulfur/analysis , Sulfur Dioxide/analysis , Surface Properties , Ultraviolet Rays
20.
Chem Commun (Camb) ; 54(9): 1121-1124, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29334083

ABSTRACT

UV-driven photoredox processing of cyanocuprates can generate simple sugars necessary for prebiotic synthesis. We investigate the wavelength dependence of this process from 215 to 295 nm and generally observe faster rates at shorter wavelengths. The most efficient wavelengths are accessible to a range of potential prebiotic atmospheres, supporting the potential role of cyanocuprate photochemistry in prebiotic synthesis on the early Earth.

SELECTION OF CITATIONS
SEARCH DETAIL
...