Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 50(28): F1-5, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-22016231

ABSTRACT

It has only recently been realized that solar corona can be generated by dispersions of tree pollen grains suspended in the atmosphere, and these studies have come almost exclusively from Scandinavia. Using corona photographic and surface pollen analyses, it is shown here that paper birch trees in the interior of Alaska regularly generate solar corona during the boreal green-out in mid-May. Although near-spherical in shape, these ~27 µm average diameter particles have three surface protrusions involved in germination that are indicated to aid in the generation of elliptical corona, for which a strong preferential particle orientation is needed. For observations at solar elevation angles of ~35°-40°, an axis ratio of about 1.2 and average radius of 2.5° (for the second-order red band) are found. Because oriented particles of a particular shape tend to fall slower than randomly oriented ones, this microdesign promotes the lateral spread of pollen and enhances tree reproductive opportunities, an especially important trait for pioneering species.


Subject(s)
Betula/cytology , Pollen/cytology , Alaska , Atmosphere , Betula/physiology , Light , Optical Phenomena , Particle Size , Photography , Reproduction , Scattering, Radiation , Seasons
2.
Appl Opt ; 47(34): H171-5, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-19037339

ABSTRACT

The rainbow has had an important role in religion, art, and science. Recently, artists have attempted to create indoor rainbow displays as interactive exhibitions of art, but based, nonetheless, on the principles of the scattering behavior of raindrops and the experience of experiment. Motivated by recently viewing the Beauty, 1993, installation at the San Francisco Museum of Modern Art (SFMOMA), we describe here a modeling program to explain the diversity of rainbow phenomena one can see visually in the gallery. The most significant impression gleaned in the museum is the acute spatial dependence of rainbow form on the viewing position in the presence of a local divergent light source (i.e., a floodlamp), in stark contrast to the unchangeable natural rainbow produced by an unimaginably distant Sun. This represents a case of the local (divergent) versus solar (parallel) light ray source distinction in atmospheric optical displays, which is one of a handful of anthropogenic versus natural situations responsible for optics displays that have been so far described. Through geometrical optics and Airy's theory simulations we show a rich relationship between the locally produced rainbow phenomena and the chamber equipment geometry and viewing position.


Subject(s)
Astronomical Phenomena , Art , Beauty , Esthetics/psychology , Exhibitions as Topic , Humans , Museums , Nature , Optics and Photonics , Solar System
3.
Appl Opt ; 44(27): 5684-7, 2005 Sep 20.
Article in English | MEDLINE | ID: mdl-16201430

ABSTRACT

Upper tropospheric cirrus clouds consist of hexagonal ice crystals, which geometrical ray-tracing-theory predicts should regularly produce a variety of optical phenomena such as vivid 22 degrees and 46 degrees halos. Yet, cirrus inconsistently generate such optical displays, while a class of more exotic displays are reported, albeit rarely. I review current knowledge of the cirrus cloud microphysical factors that control ice crystal shape, and hence halo/arc formation, but also appeal to halo enthusiasts to help investigate the causes of unusually complex, brilliant, or rare optical displays. Currently, a wealth of meteorological information can be tapped from the Internet to help advance our knowledge of the basic meteorological factors leading to these rare events.

4.
Nature ; 434(7032): 456, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15791245

ABSTRACT

Particles lofted into the atmosphere by desert dust storms can disperse widely and affect climate directly through aerosol scattering and absorption. They can also affect it indirectly by changing the scattering properties of clouds and, because desert dusts are particularly active ice-forming agents, by affecting the formation and thermodynamic phase of clouds. Here I show that dust storms that occurred in Asia early in 2004 created unusual ice clouds over Alaska at temperatures far warmer than those expected for normal cirrus-cloud formation.

5.
Appl Opt ; 42(3): 332-41, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12570253

ABSTRACT

In this fourth of a series of papers that describe long-term cloud research at the Facility for Atmospheric Remote Sensing at Salt Lake City, Utah, an approximately 10-year record of polarization lidar and photographic observations is analyzed to characterize the occurrence of optical displays in our local varieties of midlatitude cirrus clouds. The frequencies of occurrence of various types of halo, arc, and corona displays are evaluated according to their appearance and longevity over nominal 1-h observation periods and to the meteorological source of the cirrus. We find that complex halo-arc displays are rare at our locale and that even the so-called common 22 degree halo occurs infrequently as a complete long-lived ring. For example, only approximately 6% of the 1561-h daytime cirrus periods have bright and prolonged 22 degree halos, although a total of 37.3% have some indications of this halo, even if they are brief and fragmentary. Other fairly frequent features are the 22 degree upper tangent arc (8.6%), 22 degree parhelia (8.5%), and solar corona (7.2%). Of the optical displays observed, 83.6% are refraction based, only 1.9% are due to reflection phenomena, and a surprising 15.4% are caused by diffraction. Complex halo-arc displays are disproportionally associated with cirrus formed in tropical or subtropical airflow and also contain more horizontally oriented planar ice crystals. Lidar linear depolarization ratios from a subset of vivid displays show significant differences between halo- and the corona-producing cirrus, reflecting the effects of particle shape. Halos are associated with relatively warm cirrus that contain randomly and horizontally oriented planar ice crystals, whereas the colder corona cirrus produce much stronger depolarization from crystals too small to be uniformly oriented. Comparisons are made with available information from other locales, and we attempt to explain the geographical differences in terms of basic cirrus cloud processes.

6.
Appl Opt ; 42(3): 486-91, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12570270

ABSTRACT

On the evening of 25 November 1998, a cirrus cloud revealing the pastel colors of the iridescence phenomenon was photographed and studied by a polarization lidar system at the University of Utah Facility for Atmospheric Remote Sensing (FARS). The diffraction of sunlight falling on relatively minute cloud particles, which display spatial gradients in size, is the cause of iridescence. According to the 14-year study of midlatitude cirrus clouds at FARS, cirrus rarely produce even poor iridescent patches, making this particularly long-lived and vivid occurrence unique. In this unusually high (13.2-14.4-km) and cold (-69.7 degrees to -75.5 degrees) tropopause-topped cirrus cloud, iridescence was noted from approximately 6.0 degrees to approximately 13.5 degrees from the Sun. On the basis of simple diffraction theory, this indicates the presence of particles of 2.5-5.5-microm effective diameter. The linear depolarization ratios of delta = 0.5 measured by the lidar verify that the cloud particles were nonspherical ice crystals. The demonstration that ice clouds can generate iridescence has led to the conclusion that iridescence is rarely seen in midlatitude cirrus clouds because populations of such small particles do not exist for long in the presence of the relatively high water-vapor supersaturations needed for ice-particle nucleation.

SELECTION OF CITATIONS
SEARCH DETAIL
...