Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 33(44): e2101589, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34561916

ABSTRACT

Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.

2.
Small ; 16(45): e2004208, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33078566

ABSTRACT

The discovery of ferromagnetism in atomically thin layers at room temperature widens the prospects of 2D materials for device applications. Recently, two independent experiments demonstrated magnetic ordering in two dissimilar 2D systems, CrI3 and Cr2 Ge2 Te6 , at low temperatures and in VSe2 at room temperature, but observation of intrinsic room-temperature magnetism in 2D materials is still a challenge. Here a transition at room temperature that increases the magnetization in magnetite while thinning down the bulk material to a few atom-thick sheets is reported. DC magnetization measurements prove ferrimagnetic ordering with increased magnetization and density functional theory calculations ascribe their origin to the low dimensionality of the magnetite layers. In addition, surface energy calculations for different cleavage planes in passivated magnetite crystal agree with the experimental observations of obtaining 2D sheets from non-van der Waals crystals.

3.
Adv Mater ; 32(26): e1908291, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32363647

ABSTRACT

Hunger and chronic undernourishment impact over 800 million people, which translates to ≈10.7% of the world's population. While countries are increasingly making efforts to reduce poverty and hunger by pursuing sustainable energy and agricultural practices, a third of the food produced around the globe still is wasted and never consumed. Reducing food shortages is vital in this effort and is often addressed by the development of genetically modified produce or chemical additives and inedible coatings, which create additional health and environmental concerns. Herein, a multifunctional bio-nanocomposite comprised largely of egg-derived polymers and cellulose nanomaterials as a conformal coating onto fresh produce that slows down food decay by retarding ripening, dehydration, and microbial invasion is reported. The coating is edible, washable, and made from readily available inexpensive or waste materials, which makes it a promising economic alternative to commercially available fruit coatings and a solution to combat food wastage that is rampant in the world.


Subject(s)
Edible Films , Food Storage/methods , Fruit/chemistry , Nanocomposites/chemistry , Cellulose/chemistry , Curcumin/chemistry , Egg White/chemistry , Egg Yolk/chemistry , Surface Tension , Viscosity
4.
Nano Lett ; 19(9): 6338-6345, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31356089

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures have been proposed as potential candidates for a variety of applications like quantum computing, neuromorphic computing, solar cells, and flexible field effective transistors. The 2D TMDC heterostructures at the present stage face difficulties being implemented in these applications because of lack of large and sharp heterostructure interfaces. Herein, we address this problem via a CVD technique to grow thermodynamically stable heterostructure of 2H/1T' MoSe2-ReSe2 using conventional transition metal phase diagrams as a reference. We demonstrate how the thermodynamics of mixing in the MoReSe2 system during CVD growth dictates the formation of atomically sharp interfaces between MoSe2 and ReSe2, which can be confirmed by high-resolution scanning transmission electron microscopy imaging, revealing zigzag selenium-terminated interface between the epitaxial 2H and 1T' lattices. Our work provides useful insights for understanding the stability of 2D heterostructures and interfaces between chemically, structurally, and electronically different phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...