Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Steroids ; 119: 18-30, 2017 03.
Article in English | MEDLINE | ID: mdl-28089927

ABSTRACT

Analogs of 1α,25-dihydroxyvitamin D3 (S1) with 20-epi modification (20-epi analogs) possess unique biological properties. We previously reported that 1α,25-dihydroxy-20-epi-vitamin D3 (S2), the basic 20-epi analog is metabolized into less polar metabolites (LPMs) in rat osteosarcoma cells (UMR-106) but not in a perfused rat kidney. Furthermore, we also noted that only selective 20-epi analogs are metabolized into LPMs. For example, 1α,25-dihydroxy-16-ene-20-epi-vitamin D3 (S4), but not 1α,25-dihydroxy-16-ene-23-yne-20-epi-vitamin D3 (S5) is metabolized into LPMs. In spite of these novel findings, the unequivocal identification of LPMs has not been achieved to date. We report here on a thorough investigation of the metabolism of S4 in UMR-106 cells and isolated two major LPMs produced directly from the substrate S4 itself and two minor LPMs produced from 3-epi-S4, a metabolite of S4 produced through C-3 epimerization pathway. Using GC/MS, ESI-MS and 1H NMR analysis, we identified all the four LPMs of S4 as 25-hydroxy-16-ene-20-epi-vitamin D3-1-stearate and 25-hydroxy-16-ene-20-epi-vitamin D3-1-oleate and their respective C-3 epimers. We report here for the first time the elucidation of a novel pathway of metabolism in UMR-106 cells in which both 1α,25(OH)2-16-ene-20-epi-D3 and 1α,25(OH)2-16-ene-20-epi-3-epi-D3 undergo C-1 esterification into stearic and oleic acid esters.


Subject(s)
Cholecalciferol/metabolism , Animals , Calcitriol/chemistry , Calcitriol/metabolism , Cell Line, Tumor , Cholecalciferol/chemistry , Esters/chemistry , Esters/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Osteosarcoma/metabolism , Rats , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Vitamin D/analogs & derivatives , Vitamin D/chemistry , Vitamin D/metabolism
2.
J Cell Biochem ; 96(3): 569-78, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16088954

ABSTRACT

Since our original demonstration of the metabolism of 1alpha,25(OH)2D3 into 1alpha,25(OH)2-3-epi-D3 in human keratinocytes, there have been several reports indicating that epimerization of the 3 hydroxyl group of vitamin D compounds is a common metabolic process. Recent studies reported the metabolism of 25OHD3 and 24(R),25(OH)2D3 into their respective C-3 epimers, indicating that the presence of 1alpha hydroxyl group is not necessary for the 3-epimerization of vitamin D compounds. To determine whether the presence of a 25 hydroxyl group is required for 3-epimerization of vitamin D compounds, we investigated the metabolism of 1alphaOHD3, a non-25 hydroxylated vitamin D compound, in rat osteosarcoma cells (ROS 17/2.8). We noted metabolism of 1alphaOHD3 into a less polar metabolite which was unequivocally identified as 1alphaOH-3-epi-D3 using the techniques of HPLC, GC/MS, and 1H-NMR analysis. We also identified 1alphaOH-3-epi-D3 as a circulating metabolite in rats treated with pharmacological concentrations of 1alphaOHD3. Thus, these results indicated that the presence of a 25 hydroxyl group is not required for 3-epimerization of vitamin D compounds. Furthermore, the results from the same studies also provided evidence to indicate that 1alphaOH-3-epi-D3, like 1alphaOHD3, is hydroxylated at C-25. We then evaluated the biological activities of 1alphaOH-3-epi-D3. Treatment of normal rats every other day for 7 days with 2.5 nmol/kg of 1alphaOH-3-epi-D3 did not raise serum calcium, while the same dose of 1alphaOHD3 increased serum calcium by 3.39 +/- 0.52 mg/dl. Interestingly, in the same rats which received 1alphaOH-3-epi-D3 we also noted a reduction in circulating PTH levels by 65 +/- 7%. This ability of 1alphaOH-3-epi-D3 to suppress PTH levels in normal rats without altering serum calcium was further tested in rats with reduced renal function. The results indicated that the ED50 of 1alphaOH-3-epi-D3 for suppression of PTH was only slightly higher than that of 1alpha,25(OH)2D3, but that the threshold dose of the development of hypercalcemia (total serum Ca > 10.5 mg/dl) was nearly 80 times higher. These findings indicate that 1alphaOH-3-epi-D3 is a highly selective vitamin D analog with tremendous potential for treatment of secondary hyperparathyroidism in chronic renal failure patients.


Subject(s)
Cholecalciferol/analogs & derivatives , Cholecalciferol/metabolism , Parathyroid Hormone/metabolism , Animals , Calcium/metabolism , Cell Line, Tumor , Cholecalciferol/chemistry , Female , Humans , Male , Molecular Structure , Osteosarcoma , Rats , Rats, Sprague-Dawley , Uremia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...