Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 93(43): 14369-14374, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34669396

ABSTRACT

Corrosion occurring in reinforced concrete has turned into a primary concern of the current century, concrete being the most ubiquitous and predominant material used in the construction industry. Among the many interrelated processes that trigger corrosion of metallic reinforcements, the penetration of chloride ions into the concrete matrix is the most insidious threat. Herein, we developed the first electrochemical device entirely made of paper that allows for the direct, prompt, and noninvasive evaluation of free chloride ion contamination in concrete-based constructions. Our device is based on a three-layer wax-modified filter paper, consisting of two Ag/AgCl screen-printed electrodes that are interfaced by a junction pad in a sandwich-like configuration. Filter paper allows for generating a vertical-flow potentiometric device capable of measuring the electrochemical potential between two solutions containing different concentrations of chloride ions, which are separately drop-cast on the top and bottom layers. After demonstrating the analytical performance of the device, the same principle was applied to the evaluation of the chloride contents in different concrete samples, exploiting paper as a suitable interfacing material for potentiometric measurements on the cement solid surface. Laboratory-prepared concrete samples with known chloride contents were first assessed, and then, the paper-based vertical-flow device was applied to real concrete structures at the Giacomo Manzù Museum (Ardea, Italy) for the evaluation of chloride contamination caused by the proximity to the seaside. The capability of our device to provide timely warning of the risk conditions of concrete-based artifacts was demonstrated.

2.
Bull Environ Contam Toxicol ; 97(3): 432-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27385368

ABSTRACT

The chemicals warfare agents (CWAs) are an extremely toxic class of molecules widely produced in many industrialized countries for decades, these compounds frequently contained arsenic. The plants where the CWAs have been produced or the plants where they have been demilitarized after the Second World War with unacceptable techniques can represent a serious environmental problem. CWAs standards are difficult to find on market so in present work an environmental assessment method based on markers has been proposed. Triphenylarsine, phenylarsine oxide and thiodiglycol have been selected as markers. Three reliable analytical methods based on gaschromatography and mass detection have been proposed and tested for quantitative analysis of markers. Methods performance have been evaluated testing uncertainty, linearity, recovery and detection limits and also comparing detection limits with exposure limits of reference CWAs. Proposed assessment methods have been applied to a case study of a former industrial plant sited in an area characterized by a high background of mineral arsenic.


Subject(s)
Arsenicals/analysis , Chemical Warfare Agents/analysis , Mustard Gas/analysis , Soil/chemistry , Sulfhydryl Compounds/analysis , Biomarkers/analysis , Chromatography, Gas , Limit of Detection
3.
Virus Res ; 210: 318-26, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26359111

ABSTRACT

Among the potential biological agents suitable as a weapon, Ebola virus represents a major concern. Classified by the CDC as a category A biological agent, Ebola virus causes severe hemorrhagic fever, characterized by high case-fatality rate; to date, no vaccine or approved therapy is available. The EVD epidemic, which broke out in West Africa since the late 2013, has got the issue of the possible use of Ebola virus as biological warfare agent (BWA) to come to the fore once again. In fact, due to its high case-fatality rate, population currently associates this pathogen to a real and tangible threat. Therefore, its use as biological agent by terrorist groups with offensive purpose could have serious repercussions from a psychosocial point of view as well as on closely sanitary level. In this paper, after an initial study of the main characteristics of Ebola virus, its potential as a BWA was evaluated. Furthermore, given the spread of the epidemic in West Africa in 2014 and 2015, the potential dissemination of the virus from an urban setting was evaluated. Finally, it was considered the actual possibility to use this agent as BWA in different scenarios, and the potential effects on one or more nation's stability.


Subject(s)
Biological Warfare Agents , Bioterrorism , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Africa, Western/epidemiology , Humans
4.
Int J Microbiol ; 2015: 769121, 2015.
Article in English | MEDLINE | ID: mdl-25852754

ABSTRACT

The Ebola virus epidemic burst in West Africa in late 2013, started in Guinea, reached in a few months an alarming diffusion, actually involving several countries (Liberia, Sierra Leone, Nigeria, Senegal, and Mali). Guinea and Liberia, the first nations affected by the outbreak, have put in place measures to contain the spread, supported by international organizations; then they were followed by the other nations affected. In the present EVD outbreak, the geographical spread of the virus has followed a new route: the achievement of large urban areas at an early stage of the epidemic has led to an unprecedented diffusion, featuring the largest outbreak of EVD of all time. This has caused significant concerns all over the world: the potential reaching of far countries from endemic areas, mainly through fast transports, induced several countries to issue information documents and health supervision for individuals going to or coming from the areas at risk. In this paper the geographical spread of the epidemic was analyzed, assessing the sequential appearance of cases by geographic area, considering the increase in cases and mortality according to affected nations. The measures implemented by each government and international organizations to contain the outbreak, and their effectiveness, were also evaluated.

5.
Anal Bioanal Chem ; 399(9): 2987-95, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20953766

ABSTRACT

We report the development of a suitable protocol for the identification of the biological origin of binding media on tiny samples from ancient paintings, by exploitation of the high specificity and high sensitivity offered by the state-of-the art DNA analysis. In particular, our aim was to molecularly characterize mitochondrial regions of the animal species traditionally employed for obtaining glues. The model has been developed using aged painting models and then tested to analyze the organic components in samples from the polychrome terracotta Madonna of Citerna by Donatello (1415-1420), where, by GC-MS and FTIR spectroscopy, animal glues and siccative oils were identified. The results obtained are good in terms of both sensibility and specificity of the method. First of all, it was possible to confirm that Donatello used animal glue for the preparation of the painted layers of the Madonna of Citerna and, specifically, glue derived from Bos taurus. Data obtained from sequencing confirm that each sample contains animal glue, revealing that it was mostly prepared from two common European taurine lineages called T2 and T3. There is one remarkable exception represented by one sample which falls into a surviving lineage of the now extinct European aurochs.


Subject(s)
Adhesives/analysis , DNA, Mitochondrial/analysis , Gas Chromatography-Mass Spectrometry/methods , Mammals/genetics , Paintings , Spectroscopy, Fourier Transform Infrared/methods , Adhesives/metabolism , Animals , Base Sequence , Cattle , DNA, Mitochondrial/genetics , Mammals/classification , Mammals/metabolism , Molecular Sequence Data , Phylogeny , Rabbits , Sheep , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...