Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(15): 6752-6766, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38551622

ABSTRACT

Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.

2.
Chemistry ; 30(3): e202303127, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37942658

ABSTRACT

The reactivity of FeIII -alkylperoxido complexes has remained a riddle to inorganic chemists owing to their thermal instability and impotency towards organic substrates. These iron-oxygen adducts have been known as sluggish oxidants towards oxidative electrophilic and nucleophilic reactions. Herein, we report the synthesis and spectroscopic characterization of a relatively stable mononuclear high-spin FeIII -alkylperoxido complex supported by an engineered bispidine framework. Against the notion, this FeIII -alkylperoxido complex serves as a rare example of versatile reactivity in both electrophilic and nucleophilic reactions. Detailed mechanistic studies and computational calculations reveal a novel reaction mechanism, where a putative superoxido intermediate orchestrates the amphoteric property of the oxidant. The design of the backbone is pivotal to convey stability and reactivity to alkylperoxido and superoxido intermediates. Contrary to the well-known O-O bond cleavage that generates an FeIV -oxido species, the FeIII -alkylperoxido complex reported here undergoes O-C bond scission to generate a superoxido moiety that is responsible for the amphiphilic reactivity.

3.
Chemistry ; 29(39): e202300478, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37066848

ABSTRACT

High-valent iron(IV)-oxo intermediates are versatile oxidants in the biotransformation of various substrates by metalloenzymes and catalyze essential reactions for human health as well as in the biodegradation of toxic organic pollutants in the environment. Herein, we report a biomimetic system that efficiently reacts with halophenols through defluorination reactions and characterize various short-lived intermediates along the reaction mechanism. We study the reactivity pattern of a nonheme iron(IV)-oxo species with a series of trihalophenols (X=F, Cl, Br). A combined experimental and computational study reveals that the oxidative dehalogenation of 2,4,6-trifluorophenol is initiated with an H-atom abstraction from the phenolic group by the iron(IV)-oxo species resulting in the formation of a phenolate radical and an iron(III)-hydroxo species. This iron(III)-hydroxo species forms an adduct with the oxidized substrate with λmax at 558 nm which subsequently decays to give quinones as products.

4.
Inorg Chem ; 62(5): 2244-2256, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36651185

ABSTRACT

Bisphenol A (BPA, 2,2-bis-(4-hydroxyphenyl)propane) is used as a precursor in the synthesis of polycarbonate and epoxy plastics; however, its availability in the environment is causing toxicity as an endocrine-disrupting chemical. Metabolism of BPA and their analogues (substitutes) is generally performed by liver cytochrome P450 enzymes and often leads to a mixture of products, and some of those are toxic. To understand the product distributions of P450 activation of BPA, we have performed a computational study into the mechanisms and reactivities using large model structures of a human P450 isozyme (P450 2C9) with BPA bound. Density functional theory (DFT) calculations on mechanisms of BPA activation by a P450 compound I model were investigated, leading to a number of possible products. The substrate-binding pocket is tight, and as a consequence, aliphatic hydroxylation is not feasible as the methyl substituents of BPA cannot reach compound I well due to constraints of the substrate-binding pocket. Instead, we find low-energy pathways that are initiated with phenol hydrogen atom abstraction followed by OH rebound to the phenolic ortho- or para-position. The barriers of para-rebound are well lower in energy than those for ortho-rebound, and consequently, our P450 2C9 model predicts dominant hydroxycumyl alcohol products. The reactions proceed through two-state reactivity on competing doublet and quartet spin state surfaces. The calculations show fast and efficient substrate activation on a doublet spin state surface with a rate-determining electrophilic addition step, while the quartet spin state surface has multiple high-energy barriers that can also lead to various side products including C4-aromatic hydroxylation. This work shows that product formation is more feasible on the low spin state, while the physicochemical properties of the substrate govern barrier heights of the rate-determining step of the reaction. Finally, the importance of the second-coordination sphere is highlighted that determines the product distributions and guides the bifurcation pathways.


Subject(s)
Cytochrome P-450 Enzyme System , Phenols , Humans , Biotransformation , Cytochrome P-450 Enzyme System/chemistry , Density Functional Theory , Hydroxylation
7.
Faraday Discuss ; 234(0): 58-69, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35170590

ABSTRACT

Mononuclear high-valent iron(IV)-oxo intermediates are excellent oxidants towards oxygenation reactions by heme and nonheme metalloenzymes and their model systems. One of the most important functions of these intermediates in nature is to detoxify various environmental pollutants. Organic substrates, such as halogenated phenols, are known to be water pollutants which can be degraded to their less hazardous forms through an oxidation reaction by iron(IV)-oxo complexes. Metalloproteins in nature utilize various types of second-coordination sphere interactions to anchor the substrate in the vicinity of the active site. This concept of substrate-binding is well-known for natural enzymes, but is elusive for the relevant biomimetic model systems. Herein, we report the oxidative reactivity patterns of an iron(IV)-oxo intermediate, [FeIV(O)(2PyN2Q)]2+, (2PyN2Q = 1,1-di(pyridin-2yl)-N,N-bis(quinolin-2-ylmethyl)methanamine) with a series of mono-, di- and tri-halophenols. A detailed experimental study shows that the dehalogenation reactions of the halophenols by such iron(IV)-oxo intermediates proceed via an initial hydrogen atom abstraction from the phenolic O-H group. Furthermore, based on the size and nucleophilicity of the halophenol, an intermediate substrate-bound species forms that is a phenolate adduct to the ferric species, which thereafter leads to the formation of the corresponding products.


Subject(s)
Heme , Iron , Heme/chemistry , Iron/chemistry , Oxidation-Reduction , Oxidative Stress
8.
Acc Chem Res ; 55(1): 65-74, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34915695

ABSTRACT

Non-heme iron dioxygenases catalyze vital processes for human health related to the biosynthesis of essential products and the biodegradation of toxic metabolites. Often the natural product biosyntheses by these non-heme iron dioxygenases is highly regio- and chemoselective, which are commonly assigned to tight substrate-binding and positioning. However, recent high-level computational modeling has shown that substrate-binding and positioning is only part of the story and long-range electrostatic interactions can play a major additional role.In this Account, we review and summarize computational viewpoints on the high regio- and chemoselectivity of α-ketoglutarate-dependent non-heme iron dioxygenases and how external perturbations affect the catalysis. In particular, studies from our groups have shown that often a regioselectivity in enzymes can be accomplished by stabilization of the rate-determining transition state for the reaction through external charges, electric dipole moments, or local electric field effects. Furthermore, bond dissociation energies in molecules are shown to be influenced by an electric field effect, and through targeting a specific bond in an electric field, this can lead to an unusually specific reaction. For instance, in the carbon-induced starvation protein, we studied two substrate-bound conformations and showed that regardless of what C-H bond of the substrate is closest to the iron(IV)-oxo oxidant, the lowest hydrogen atom abstraction barrier is always for the pro-S C2-H abstraction due to an induced dipole moment of the protein that weakens this bond. In another example of the hygromycin biosynthesis enzyme, an oxidative ring-closure reaction in the substrate forms an ortho-δ-ester ring. Calculations on this enzyme show that the selectivity is guided by a protonated lysine residue in the active site that, through its positive charge, triggers a low energy hydrogen atom abstraction barrier. A final set of examples in this Account discuss the viomycin biosynthesis enzyme and the 2-(trimethylammonio)ethylphosphonate dioxygenase (TmpA) enzyme. Both of these enzymes are shown to possess a significant local dipole moment and local electric field effect due to charged residues surrounding the substrate and oxidant binding pockets. The protein dipole moment and local electric field strength changes the C-H bond strengths of the substrate as compared to the gas-phase triggers the regioselectivity of substrate activation. In particular, we show that in the gas phase and in a protein environment C-H bond strengths are different due to local electric dipole moments and electric field strengths. These examples show that enzymes have an intricately designed structure that enables a chemical reaction under ambient conditions through the positioning of positively and negatively charged residues that influence and enhance reaction mechanisms. These computational insights create huge possibilities in bioengineering to apply local electric field and dipole moments in proteins to achieve an unusual selectivity and specificity and trigger a fit-for-purpose biocatalyst for unique biotransformations.


Subject(s)
Dioxygenases , Ketoglutaric Acids , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Catalytic Domain , Dioxygenases/metabolism , Humans , Iron
9.
Org Biomol Chem ; 19(9): 1879-1899, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33406196

ABSTRACT

Aldehyde deformylation is an important reaction in biology, organic chemistry and inorganic chemistry and the process has been widely applied and utilized. For instance, in biology, the aldehyde deformylation reaction has wide differences in biological function, whereby cyanobacteria convert aldehydes into alkanes or alkenes, which are used as natural products for, e.g., defense mechanisms. By contrast, the cytochromes P450 catalyse the biosynthesis of hormones, such as estrogen, through an aldehyde deformylation reaction step. In organic chemistry, the aldehyde deformylation reaction is a common process for replacing functional groups on a molecule, and as such, many different synthetic methods and procedures have been reported that involve an aldehyde deformylation step. In bioinorganic chemistry, a variety of metal(iii)-peroxo complexes have been synthesized as biomimetic models and shown to react efficiently with aldehydes through deformylation reactions. This review paper provides an overview of the various aldehyde deformylation reactions in organic chemistry, biology and biomimetic model systems, and shows a broad range of different chemical reaction mechanisms for this process. Although a nucleophilic attack at the carbonyl centre is the consensus reaction mechanism, several examples of an alternative electrophilic reaction mechanism starting with hydrogen atom abstraction have been reported as well. There is still much to learn and to discover on aldehyde deformylation reactions, as deciphered in this review paper.


Subject(s)
Aldehydes/chemistry , Aldehydes/metabolism , Biomimetic Materials/chemistry , Coordination Complexes/chemistry , Cytochrome P-450 Enzyme System/metabolism , Models, Chemical , Oxidation-Reduction
10.
Dalton Trans ; 49(18): 5921-5931, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32314764

ABSTRACT

High-valent iron-nitrido intermediates have been postulated as reactive intermediates in various enzymes, including the nitrogenases and the cytochromes P450, but so far few have been trapped and characterized. As little is known about their oxidative and spectroscopic properties, we decided to create biomimetic models of iron(iv)-imido complexes and compare their structure and reactivity with analogous iron(iv)-oxo systems. In this work we report the synthesis and spectroscopic characterization of a novel [FeIV(NTs)(Bntpen)]2+ complex (Bntpen = N1-benzyl-N1,N2,N2-tris(pyridine-2-ylmethyl)ethane-1,2-diamine) and study its reactivity patterns with respect to hydrogen atom abstraction and nitrogen atom transfer reactions. The work is compared with analogous pentadentate ligand systems as well as with iron(iv)-oxo species with the same ligand features and highlights the differences in chemical properties and reactivity patterns. It is shown that the reactivity is dependent on the metal ligand system that affects the physicochemical properties of the oxidant such as the redox potential, which is the main driving force for the reaction mechanism with substrates.

11.
Int J Biol Macromol ; 156: 180-185, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32289426

ABSTRACT

Transformation of renewable biomass into value-added chemicals and biofuels has evolved to be a vital field of research in recent years. Accurate estimation of reducing sugars post pretreatment of lignocellulosic biomass has been very inconsistent. For a few decades, 3,5-dinitrosalicylic acid (DNS) assay has been widely employed for the estimation of reducing sugars derived from pretreatment of lignocellulosic biomass. This assay tests for the presence of free carbonyl group (C=O), the so-called reducing sugars. This involves the oxidation of the aldehyde functional group present to the corresponding acid while DNS is simultaneously reduced to 3-amino-5-nitrosalicylic acid under alkaline conditions. However, the presence of other active carbonyl groups can potentially also react with DNS leading to incorrect yields of reducing sugars. Therefore, a detailed study has been carried out to evaluate the influence of active carbonyl compounds like furfural and 5-hydroxymethylfurfural (5-HMF) in the overall estimation of reducing sugars (glucose, xylose and arabinose) by DNS assay. In addition to this, reducing sugars estimation in the presence of furans were also investigated, it reveals that reducing sugars estimation was found to be 68% higher than actual sugars. Therefore, current findings strongly indicate that the employment of DNS assay for quantifying the reducing sugars in the presence of furans is not appropriate.


Subject(s)
Furaldehyde/analogs & derivatives , Furaldehyde/metabolism , Reducing Agents/chemistry , Reducing Agents/metabolism , Salicylates/chemistry , Salicylates/metabolism , Sugars/analysis , Aldehydes/analysis , Artifacts , Calibration , Chromatography, High Pressure Liquid , Colorimetry , Furaldehyde/analysis , Furaldehyde/chemistry , Lignin/chemistry , Spectrophotometry , Sugars/chemistry
12.
Chemistry ; 25(63): 14320-14331, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31339185

ABSTRACT

The biodegradation of compounds with C-F bonds is challenging due to the fact that these bonds are stronger than the C-H bond in methane. In this work, results on the unprecedented reactivity of a biomimetic model complex that contains an N-bridged diiron-phthalocyanine are presented; this model complex is shown to react with perfluorinated arenes under addition of H2 O2 effectively. To get mechanistic insight into this unusual reactivity, detailed density functional theory calculations on the mechanism of C6 F6 activation by an iron(IV)-oxo active species of the N-bridged diiron phthalocyanine system were performed. Our studies show that the reaction proceeds through a rate-determining electrophilic C-O addition reaction followed by a 1,2-fluoride shift to give the ketone product, which can further rearrange to the phenol. A thermochemical analysis shows that the weakest C-F bond is the aliphatic C-F bond in the ketone intermediate. The oxidative defluorination of perfluoroaromatics is demonstrated to proceed through a completely different mechanism compared to that of aromatic C-H hydroxylation by iron(IV)-oxo intermediates such as cytochrome P450 Compound I.

13.
Angew Chem Int Ed Engl ; 58(31): 10639-10643, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31108009

ABSTRACT

Mononuclear nonheme MnIII -peroxo complexes are important intermediates in biology, and take part in oxygen activation by photosystem II. Herein, we present work on two isomeric biomimetic side-on MnIII -peroxo intermediates with bispidine ligand system and reactivity patterns with aldehydes. The complexes are characterized with UV/Vis and mass spectrometric techniques and reaction rates with cyclohexane carboxaldehyde (CCA) are measured. The reaction gives an unusual regioselectivity switch from aliphatic to aldehyde hydrogen atom abstraction upon deuteration of the substrate, leading to the corresponding carboxylic acid product for the latter, while the former gives a deformylation reaction. Mechanistic details are established from kinetic isotope effect studies and density functional theory calculations. Thus, replacement of C-H by C-D raises the hydrogen atom abstraction barriers and enables a regioselectivity switch to a competitive pathway that is slightly higher in energy.

14.
Chemistry ; 25(19): 5086-5098, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30720909

ABSTRACT

Iron is an essential element in nonheme enzymes that plays a crucial role in many vital oxidative transformations and metabolic reactions in the human body. Many of those reactions are regio- and stereospecific and it is believed that the selectivity is guided by second-coordination sphere effects in the protein. Here, results are shown of a few engineered biomimetic ligand frameworks based on the N4Py (N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) scaffold and the second-coordination sphere effects are studied. For the first time, selective substitutions in the ligand framework have been shown to tune the catalytic properties of the iron(IV)-oxo complexes by regulating the steric and electronic factors. In particular, a better positioning of the oxidant and substrate in the rate-determining transition state lowers the reaction barriers. Therefore, an optimum balance between steric and electronic factors mediates the ideal positioning of oxidant and substrate in the rate-determining transition state that affects the reactivity of high-valent reaction intermediates.

15.
Dalton Trans ; 47(42): 14945-14957, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30259028

ABSTRACT

Nonheme iron dioxygenases are efficient enzymes with relevance for human health that regio- and stereospecifically transfer an oxygen atom to substrates. How they perform this task with such selectivity remains unknown, but may have to do with substrate binding, positioning and oxidant approach. To understand substrate approach on a catalytic reaction centre, we investigated the structure and reactivity of a biomimetic oxidant with ligand features that affect the interactions between oxidant and substrate. Thus, we report here the synthesis and characterization of an iron(iv)-oxo complex with pentadentate nonheme ligand, where structurally induced perturbations in the equatorial ligand field affect the spectroscopy and reactivity of the complex. We tested the activity of the complex with respect to oxygen atom transfer to and hydrogen atom abstraction from substrates. This oxidant shows improved reaction rates toward heteroatom oxidation with respect to the nonsubstituted ligand complex by ∼104 fold. The origin of the enhanced reactivity is explained with a series of density functional theory studies that show an enhanced electron affinity of the oxidant through equatorial ligand perturbations.

16.
J Am Chem Soc ; 139(50): 18328-18338, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29148746

ABSTRACT

Oxygen atom transfer by high-valent enzymatic intermediates remains an enigma in chemical catalysis. In particular, manganese is an important first-row metal involved in key biochemical processes, including the biosynthesis of molecular oxygen (through the photosystem II complex) and biodegradation of toxic superoxide to hydrogen peroxide by superoxide dismutase. Biomimetic models of these biological systems have been developed to gain understanding on the structure and properties of short-lived intermediates but also with the aim to create environmentally benign oxidants. In this work, we report a combined spectroscopy, kinetics and computational study on aldehyde deformylation by two side-on manganese(III)-peroxo complexes with bispidine ligands. Both manganese(III)-peroxo complexes are characterized by UV-vis and mass spectrometry techniques, and their reactivity patterns with aldehydes was investigated. We find a novel mechanism for the reaction that is initiated by a hydrogen atom abstraction reaction, which enables a keto-enol tautomerization in the substrate. This is an essential step in the mechanism that makes an electrophilic attack on the olefin bond possible as the attack on the aldehyde carbonyl is too high in energy. Kinetics studies determine a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium, while replacing the transferring hydrogen atom by a methyl group makes the substrate inactive and hence confirm the hypothesized mechanism. Our new mechanism is confirmed with density functional theory modeling on the full mechanism and rationalized through valence bond and thermochemical cycles. Our unprecedented new mechanism may have relevance to biological and biomimetic chemistry processes in general and gives insight into the reactivity patterns of metal-peroxo and metal-hydroperoxo intermediates in general.

17.
Inorg Chem ; 55(20): 10170-10181, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27704794

ABSTRACT

Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes, which nature uses for the oxidation of metabolites and drugs. In biomimicry and bioremediation, an important reaction relates to the detoxification of ClOx- in water, which can lead to a mixture of products through bifurcated reactions. Herein we report the first three water-soluble non-heme iron(II) complexes that can generate chlorine dioxide from chlorite at ambient temperature and physiological pH. These complexes are highly active oxygenation oxidants and convert ClO2- into either ClO2 or ClO3¯ via high-valent iron(IV)-oxo intermediates. We characterize the short-lived iron(IV)-oxo species and establish rate constants for the bifurcation mechanism leading to ClO2 and ClO3- products. We show that the ligand architecture of the metal center plays a dominant role by lowering the reduction potential of the metal center. Our experiments are supported by computational modeling, and a predictive valence bond model highlights the various factors relating to the substrate and oxidant that determine the bifurcation pathway and explains the origins of the product distributions. Our combined kinetic, spectroscopic, and computational studies reveal the key components necessary for the future development of efficient chlorite oxidation catalysts.

18.
Angew Chem Int Ed Engl ; 55(37): 11091-5, 2016 09 05.
Article in English | MEDLINE | ID: mdl-27392043

ABSTRACT

Metal-peroxo intermediates are key species in the catalytic cycles of nonheme metalloenzymes, but their chemical properties and reactivity patterns are still poorly understood. The synthesis and characterization of a manganese(III)-peroxo complex with a pentadentate bispidine ligand system and its reactivity with aldehydes was studied. Manganese(III)-peroxo can react through hydrogen-atom abstraction reactions instead of the commonly proposed nucleophilic addition reaction. Evidence of the mechanism comes from experiments which identify a primary kinetic isotope effect of 5.4 for the deformylation reaction. Computational modeling supports the established mechanism and identifies the origin of the reactivity preference of hydrogen-atom abstraction over nucleophilic addition.

19.
Angew Chem Int Ed Engl ; 54(7): 2095-9, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25557423

ABSTRACT

Mononuclear nonheme Mn(IV)=O complexes with two isomers of a bispidine ligand have been synthesized and characterized by various spectroscopies and density functional theory (DFT). The Mn(IV)=O complexes show reactivity in oxidation reactions (hydrogen-atom abstraction and sulfoxidation). Interestingly, one of the isomers (L(1) ) is significantly more reactive than the other (L(2) ), while in the corresponding Fe(IV)=O based oxidation reactions the L(2) -based system was previously found to be more reactive than the L(1) -based catalyst. This inversion of reactivities is discussed on the basis of DFT and molecular mechanics (MM) model calculations, which indicate that the order of reactivities are primarily due to a switch of reaction channels (σ versus π) and concomitant steric effects.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Oxygen/chemistry , Water/chemistry , Isomerism , Ligands , Models, Molecular , Oxidation-Reduction
20.
Chemistry ; 21(3): 1221-36, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25399782

ABSTRACT

Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found.


Subject(s)
Coordination Complexes/chemistry , Ferric Compounds/chemistry , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Molecular Conformation , Oxygen/chemistry , Quantum Theory , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...