Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Eur J Neurosci ; 54(9): 7048-7062, 2021 11.
Article in English | MEDLINE | ID: mdl-34622493

ABSTRACT

Calcium influx into presynaptic terminals through voltage-gated Ca2+ channels triggers univesicular or multivesicular release of neurotransmitters depending on the characteristics of the release machinery. However, the mechanisms underlying multivesicular release (MVR) and its regulation remain unclear. Previous studies showed that in rat cerebellum, the cyclin-dependent kinase inhibitor roscovitine profoundly increases excitatory postsynaptic current (EPSC) amplitudes at granule cell (GC)-Purkinje cell (PC) synapses by enhancing the MVR of glutamate. This compound can also moderately augment the amplitude and prolong the decay time of inhibitory postsynaptic currents (IPSCs) at molecular layer interneuron (MLI)-PC synapses via MVR enhancement and GABA spillover, thus allowing for persistent activation of perisynaptic GABA receptors. The enhanced MVR may depend on the driving force for Cav 2.1 channel-mediated Ca2+ influx. To determine whether the distinct spatiotemporal dynamics of presynaptic Ca2+ influence MVR, we compared the effects of slow and fast Ca2+ chelators, that is, EGTA and BAPTA, respectively, on roscovitine-induced actions at GC-PC and MLI-PC synapses. Membrane-permeable EGTA-AM decreased GC-PC EPSC and MLI-PC IPSC amplitudes to a similar extent but suppressed the roscovitine-induced enhancement of EPSCs. In contrast, BAPTA-AM attenuated the effects of roscovitine on IPSCs. These results suggest that roscovitine augmented glutamate release by activating the release machinery located distally from the Cav 2.1 channel clusters, while it enhanced GABA release in a manner less dependent on those at distal sites. Therefore, the spatial relationships among Ca2+ channels, buffers, and sensors are critical determinants of the differential facilitatory actions of roscovitine on glutamatergic and GABAergic synapses in the cerebellar cortex.


Subject(s)
Cerebellum/drug effects , Roscovitine/pharmacology , Synapses , Synaptic Transmission , Animals , Calcium Channels, N-Type , Cerebellum/metabolism , Glutamic Acid , Neurotransmitter Agents , Presynaptic Terminals/drug effects , Rats
2.
J Neurochem ; 155(4): 390-402, 2020 11.
Article in English | MEDLINE | ID: mdl-32491217

ABSTRACT

While high threshold voltage-dependent Ca2+ channels (VDCCs) of the N and P/Q families are crucial for evoked neurotransmitter release in the mammalian CNS, it remains unclear to what extent L-type Ca2+ channels (LTCCs), which have been mainly considered as acting at postsynaptic sites, participate in the control of transmitter release. Here, we investigate the possible role of LTCCs in regulating GABA release by cerebellar molecular layer interneurons (MLIs) from rats. We found that BayK8644 (BayK) markedly increases mIPSC frequency in MLIs and Purkinje cells (PCs), suggesting that LTCCs are expressed presynaptically. Furthermore, we observed (1) a potentiation of evoked IPSCs in the presence of BayK, (2) an inhibition of evoked IPSCs in the presence of the LTCC-specific inhibitor Compound 8 (Cp8), and (3) a strong reduction of mIPSC frequency by Cp8. BayK effects are reduced by dantrolene, suggesting that ryanodine receptors act in synergy with LTCCs. Finally, BayK enhances presynaptic AP-evoked Ca2+ transients and increases the frequency of spontaneous axonal Ca2+ transients observed in TTX. Taken together, our data demonstrate that LTCCs are of primary importance in regulating GABA release by MLIs.


Subject(s)
Calcium Channels, L-Type/physiology , Cerebellum/physiology , Interneurons/physiology , Presynaptic Terminals/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Cerebellum/cytology , Female , Male , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
3.
Eur J Neurosci ; 52(3): 3002-3021, 2020 08.
Article in English | MEDLINE | ID: mdl-32383214

ABSTRACT

Synaptic vesicle exocytosis is triggered by Ca2+ influx through several subtypes of voltage-gated calcium channels in the presynaptic terminal. We previously reported that paired-pulse stimulation at brief intervals increases Cav 2.1 (P/Q-type) channel-mediated multivesicular release (MVR) at glutamatergic synapses between granule cells (GCs) and molecular layer interneurons (MLIs) in rat cerebellar slices. However, it has yet to be determined how Cav 2 channel subtypes take part in MVR in single axon terminal. This study therefore aimed at examining the effects of roscovitine on different types of cerebellar synapses that make contacts with Purkinje cells (PCs), because this compound has been shown to enhance Cav 2.1 channel-mediated MVR at GC-MLI synapses. Bath application of roscovitine profoundly increased the amplitude of excitatory postsynaptic currents (EPSCs) at GC-PC synapses by a presynaptic mechanism as previously observed at GC-MLI synapses, whereas it caused a marginal effect on climbing fiber-mediated EPSCs in PCs. At MLI-PC synapses, roscovitine increased both the amplitude and decay time of inhibitory postsynaptic currents (IPSCs) by enhancing multivesicular GABA release. When extracellular Ca2+ concentration ([Ca2+ ]e ) decreased, roscovitine became less effective in increasing GC-PC EPSCs. By contrast, roscovitine was able to augment MLI-PC IPSCs in the low [Ca2+ ]e . The Cav 2.1 channel blocker ω-agatoxin IVA suppressed the roscovitine-induced facilitatory actions on both GC-PC EPSCs and MLI-PC IPSCs. These results demonstrate that roscovitine enhances MVR at the GC-PC excitatory synapses in a manner dependent on the driving force of Cav 2.1 channel-mediated Ca2+ influx into the nerve terminal, while it also facilitates MLI-PC inhibitory transmission via Ca2+ -insensitive mechanisms.


Subject(s)
Purkinje Cells , Synaptic Transmission , Animals , Cerebellum , Rats , Roscovitine , Synapses
4.
Cerebellum ; 15(2): 201-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25971904

ABSTRACT

The number of synaptic vesicles released during fast release plays a major role in determining the strength of postsynaptic response. However, it remains unresolved how the number of vesicles released in response to action potentials is controlled at a single synapse. Recent findings suggest that the Cav2.1 subtype (P/Q-type) of voltage-gated calcium channels is responsible for inducing presynaptic multivesicular release (MVR) at rat cerebellar glutamatergic synapses from granule cells to molecular layer interneurons. The topographical distance from Cav2.1 channels to exocytotic Ca(2+) sensors is a critical determinant of MVR. In physiological trains of presynaptic neurons, MVR significantly impacts the excitability of postsynaptic neurons, not only by increasing peak amplitude but also by prolonging decay time of the postsynaptic currents. Therefore, MVR contributes additional complexity to neural encoding and processing in the cerebellar cortex.


Subject(s)
Action Potentials/physiology , Calcium Channels, N-Type/physiology , Cerebellar Cortex/physiology , Excitatory Postsynaptic Potentials/physiology , Synapses/physiology , Animals , Humans , Synaptic Transmission/physiology
5.
J Neurosci ; 34(24): 8151-63, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24920620

ABSTRACT

Autoimmune forms of encephalitis have been associated with autoantibodies against synaptic cell surface antigens such as NMDA- and AMPA-type glutamate receptors, GABA(B) receptor, and LGI1. However, it remains unclear how many synaptic autoantigens are yet to be defined. Using immunoproteomics, we identified autoantibodies against the GABA(A) receptor in human sera from two patients diagnosed with encephalitis who presented with cognitive impairment and multifocal brain MRI abnormalities. Both patients had antibodies directed against the extracellular epitope of the ß3 subunit of the GABA(A) receptor. The ß3-subunit-containing GABA(A) receptor was a major target of the patients' serum antibodies in rat hippocampal neurons because the serum reactivity to the neuronal surface was greatly decreased by 80% when the ß3 subunit was knocked down. Our developed multiplex ELISA testing showed that both patients had similar levels of GABA(A) receptor antibodies, one patient also had a low level of LGI1 antibodies, and the other also had CASPR2 antibodies. Application of the patients' serum at the time of symptom presentation of encephalitis to rat hippocampal neuron cultures specifically decreased both synaptic and surface GABA(A) receptors. Furthermore, treatment of neurons with the patients' serum selectively reduced miniature IPSC amplitude and frequency without affecting miniature EPSCs. These results strongly suggest that the patients' GABA(A) receptor antibodies play a central role in the patients' symptoms. Therefore, this study establishes anti-GABA(A) receptor encephalitis and expands the pathogenic roles of GABA(A) receptor autoantibodies.


Subject(s)
Autoantibodies/blood , Brain Diseases/blood , Brain Diseases/immunology , Brain/pathology , Hashimoto Disease/blood , Hashimoto Disease/immunology , Receptors, GABA-A/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Brain/metabolism , Brain Diseases/complications , Brain Diseases/pathology , Cells, Cultured , Chlorocebus aethiops , Cognition Disorders/etiology , Encephalitis , Female , Hashimoto Disease/complications , Hashimoto Disease/pathology , Hippocampus/cytology , Humans , Intracellular Signaling Peptides and Proteins , Male , Membrane Potentials/drug effects , Membrane Potentials/genetics , Middle Aged , Neurons/drug effects , Neurons/metabolism , Neurotransmitter Agents/pharmacology , Protein Binding/drug effects , Protein Binding/genetics , Proteins/immunology , Rats
6.
J Neurosci ; 34(4): 1462-74, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24453334

ABSTRACT

The concomitant release of multiple numbers of synaptic vesicles [multivesicular release (MVR)] in response to a single presynaptic action potential enhances the flexibility of synaptic transmission. However, the molecular mechanisms underlying MVR at a single CNS synapse remain unclear. Here, we show that the Cav2.1 subtype (P/Q-type) of the voltage-gated calcium channel is specifically responsible for the induction of MVR. In the rat cerebellar cortex, paired-pulse activation of granule cell (GC) ascending fibers leads not only to a facilitation of the peak amplitude (PPFamp) but also to a prolongation of the decay time (PPPdecay) of the EPSCs recorded from molecular layer interneurons. PPFamp is elicited by a transient increase in the number of released vesicles. PPPdecay is highly dependent on MVR and is caused by dual mechanisms: (1) a delayed release and (2) an extrasynaptic spillover of the GC transmitter glutamate and subsequent pooling of the glutamate among active synapses. PPPdecay was specifically suppressed by the Cav2.1 channel blocker ω-agatoxin IVA, while PPFamp responded to Cav2.2/Cav2.3 (N-type/R-type) channel blockers. The membrane-permeable slow Ca(2+) chelator EGTA-AM profoundly reduced the decay time constant (τdecay) of the second EPSC; however, it only had a negligible impact on that of the first, thereby eliminating PPPdecay. These results suggest that the distance between presynaptic Cav2.1 channels and exocytotic Ca(2+) sensors is a key determinant of MVR. By transducing presynaptic action potential firings into unique Ca(2+) signals and vesicle release profiles, Cav2.1 channels contribute to the encoding and processing of neural information.


Subject(s)
Calcium Channels, N-Type/metabolism , Cerebellum/metabolism , Exocytosis/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Action Potentials/physiology , Animals , Calcium/metabolism , Excitatory Postsynaptic Potentials/physiology , Female , Male , Organ Culture Techniques , Patch-Clamp Techniques , Rats , Rats, Wistar
7.
J Physiol ; 591(13): 3433-49, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23652595

ABSTRACT

Dystonia is characterized by excessive involuntary and prolonged simultaneous contractions of both agonist and antagonist muscles. Although the basal ganglia have long been proposed as the primary region, recent studies indicated that the cerebellum also plays a key role in the expression of dystonia. One hereditary form of dystonia, rapid-onset dystonia with parkinsonism (RDP), is caused by loss of function mutations of the gene for the Na pump α3 subunit (ATP1A3). Little information is available on the affected brain regions and mechanism for dystonia by the mutations in RDP. The Na pump is composed of α and ß subunits and maintains ionic gradients of Na(+) and K(+) across the cell membrane. The gradients are utilized for neurotransmitter reuptake and their alteration modulates neural excitability. To provide insight into the molecular aetiology of RDP, we generated and analysed knockout heterozygous mice (Atp1a3(+/-)). Atp1a3(+/-) showed increased symptoms of dystonia that is induced by kainate injection into the cerebellar vermis. Atp1a3 mRNA was highly expressed in Purkinje cells and molecular-layer interneurons, and its product was concentrated at Purkinje cell soma, the site of abundant vesicular γ-aminobutyric acid transporter (VGAT) signal, suggesting the presynaptic localization of the α3 subunit in the inhibitory synapse. Electrophysiological studies showed that the inhibitory neurotransmission at molecular-layer interneuron-Purkinje cell synapses was enhanced in Atp1a3(+/-) cerebellar cortex, and that the enhancement originated via a presynaptic mechanism. Our results shed light on the role of Atp1a3 in the inhibitory synapse, and potential involvement of inhibitory synaptic dysfunction for the pathophysiology of dystonia.


Subject(s)
Cerebellar Cortex/physiology , Dystonia/physiopathology , Sodium-Potassium-Exchanging ATPase/physiology , Animals , In Vitro Techniques , Interneurons/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity , Neurons/physiology , Protein Subunits/physiology , Psychomotor Performance , Synaptic Transmission
8.
J Physiol ; 590(22): 5653-75, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22930264

ABSTRACT

A simple form of presynaptic plasticity, paired-pulse facilitation (PPF), has been explained as a transient increase in the probability of vesicular release. Using the whole-cell patch-clamp technique to record synaptic activity in rat cerebellar slices, we found different forms of presynaptically originated short-term plasticity during glutamatergic excitatory neurotransmission from granule cells (GCs) to molecular-layer interneurones (INs). Paired-pulse activation of GC axons at short intervals (30-100 ms) elicited not only a facilitation in the peak amplitude (PPF(amp)), but also a prolongation in the decay-time constant (PPP(decay)) of the EPSCs recorded from INs. The results of pharmacological tests and kinetics analyses suggest that the mechanisms underlying the respective types of short-term plasticity were different. PPF(amp) was elicited by a transient increase in the number of released vesicles. On the other hand, PPP(decay) was caused not only by delayed release as has been reported but also by extrasynaptic spillover of the GC transmitter and the subsequent intersynaptic pooling. Both PPF(amp) and PPP(decay) closely rely on repetitive-activation-induced multivesicular release. Using a dynamic clamp technique, we further examined the physiological significance of different presynaptic plasticity, and found that PPF(amp) and PPP(decay) can differentially encode and process neuronal information by influencing the total synaptic charge transferred to postsynaptic INs to reflect activation frequency of the presynaptic GCs.


Subject(s)
Glutamic Acid/metabolism , Interneurons/physiology , Synapses/physiology , Synaptic Vesicles/physiology , Animals , Cerebellar Cortex/cytology , Cerebellar Cortex/physiology , Excitatory Postsynaptic Potentials , Exocytosis , GABA Antagonists/pharmacology , Interneurons/cytology , Neuronal Plasticity , Rats , Rats, Wistar , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
9.
Eur J Neurosci ; 32(11): 1843-53, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21070388

ABSTRACT

Neurotransmitters diffuse out of the synaptic cleft and act on adjacent synapses to exert concerted control of the synaptic strength within neural pathways that converge on single target neurons. The excitatory transmitter released from climbing fibers (CFs), presumably glutamate, is shown to inhibit γ-aminobutyric acid (GABA) release at basket cell (BC)-Purkinje cell (PC) synapses in the rat cerebellar cortex through its extrasynaptic diffusion and activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on BC axon terminals. This study aimed at examining how the CF transmitter-diffusion-mediated presynaptic inhibition is controlled by glutamate transporters. Pharmacological blockade of the PC-selective neuronal transporter EAAT4 markedly enhanced CF-induced inhibition of GABAergic transmission. Tetanic CF-stimulation elicited long-term potentiation of glutamate transporters in PCs, and thereby attenuated the CF-induced inhibition. Combined use of electrophysiology and immunohistochemistry revealed a significant inverse relationship between the level of EAAT4 expression and the inhibitory action of CF-stimulation on the GABA release at different cerebellar lobules - the CF-induced inhibition was profound in lobule III, where the EAAT4 expression level was low, whereas it was minimal in lobule X, where EAAT4 was abundant. The findings clearly demonstrate that the neuronal glutamate transporter EAAT4 in PCs plays a critical role in the extrasynaptic diffusion of CF transmitter - it appears not only to retrogradely determine the degree of CF-mediated inhibition of GABAergic inputs to the PC by controlling the glutamate concentration for intersynaptic diffusion, but also regulate synaptic information processing in the cerebellar cortex depending on its differential regional distribution as well as use-dependent plasticity of uptake efficacy.


Subject(s)
Excitatory Amino Acid Transporter 4/metabolism , Interneurons/metabolism , Neurotransmitter Agents/metabolism , Purkinje Cells/metabolism , Synapses/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Cerebellum/cytology , Diffusion , Excitatory Amino Acid Transporter 4/antagonists & inhibitors , Inhibitory Postsynaptic Potentials/physiology , Interneurons/cytology , Patch-Clamp Techniques , Purkinje Cells/cytology , Rats , Rats, Wistar , Synaptic Transmission/physiology
10.
J Neurosci ; 26(8): 2278-89, 2006 Feb 22.
Article in English | MEDLINE | ID: mdl-16495455

ABSTRACT

The climbing fiber (CF) neurotransmitter not only excites the postsynaptic Purkinje cell (PC) but also suppresses GABA release from inhibitory interneurons converging onto the same PC depending on AMPA-type glutamate receptor (AMPAR) activation. Although the CF-/AMPAR-mediated inhibition of GABA release provides a likely mechanism boosting the CF input-derived excitation, how the CF transmitter reaches target AMPARs to elicit this action remains unknown. Here, we report that the CF transmitter diffused from its release sites directly targets GluR2/GluR3 AMPARs on interneuron terminals to inhibit GABA release. A weak GluR3-AMPAR agonist, bromohomoibotenic acid, produced excitatory currents in the postsynaptic PCs without presynaptic inhibitory effect on GABAergic transmission. Conversely, a specific inhibitor of the GluR2-lacking/Ca2+-permeable AMPARs, philanthotoxin-433, did not affect the CF-induced inhibition but suppressed AMPAR-mediated currents in Bergmann glia. A low-affinity GluR antagonist, gamma-D-glutamylglycine, or retardation of neurotransmitter diffusion by dextran reduced the inhibitory action of CF-stimulation, whereas blockade of glutamate transporters enhanced the CF-induced inhibition. The results suggest that the CF transmitter released after repeated stimulation overwhelms local glutamate uptake and thereby diffuses from the release site to reach GluR2/GluR3 AMPARs on nearby interneuron terminals. Double immunostaining showed that GluR2/3 subunits and glutamate decarboxylase or synaptophysin are colocalized at the perisomatic GABAergic processes surrounding PCs. Finally, electron microscopy detected specific immunoreactivity for GluR2/3 at the presynaptic terminals of symmetric axosomatic synapses on the PC. These findings demonstrate that the CF transmitter directly inhibits GABA release from interneurons to the PC, relying on extrasynaptic diffusion and local heterogeneity in AMPAR subunit compositions.


Subject(s)
Cerebellum/physiology , Interneurons/physiology , Neural Inhibition/physiology , Neurotransmitter Agents/metabolism , Presynaptic Terminals/physiology , Purkinje Cells/physiology , Receptors, AMPA/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Cells, Cultured , Neural Pathways/physiology , Rats , Rats, Wistar , Synapses/physiology , Synaptic Transmission/physiology
11.
Eur J Neurosci ; 19(9): 2464-74, 2004 May.
Article in English | MEDLINE | ID: mdl-15128400

ABSTRACT

A major subtype of glutamate receptors, AMPA receptors (AMPARs), are generally thought to mediate excitation at mammalian central synapses via the ionotropic action of ligand-gated channel opening. It has recently emerged, however, that synaptic activation of AMPARs by glutamate released from the climbing fibre input elicits not only postsynaptic excitation but also presynaptic inhibition of GABAergic transmission onto Purkinje cells in the cerebellar cortex. Although presynaptic inhibition is critical for information processing at central synapses, the molecular mechanisms by which AMPARs take part in such actions are not known. This study therefore aimed at further examining the properties of AMPAR-mediated presynaptic inhibition at GABAergic synapses in the rat cerebellum. Our data provide evidence that the climbing fibre-induced inhibition of GABA release from interneurons depends on AMPAR-mediated activation of GTP-binding proteins coupled with down-regulation of presynaptic voltage-dependent Ca(2+) channels. A G(i/o)-protein inhibitor, N-ethylmaleimide, selectively abolished the AMPAR-mediated presynaptic inhibition at cerebellar GABAergic synapses but did not affect AMPAR-mediated excitatory actions on Purkinje cells. Furthermore, both G(i/o)-coupled receptor agonists, baclofen and DCG-IV, and the P/Q-type calcium channel blocker omega-agatoxin IVA markedly occluded the AMPAR-mediated inhibition of GABAergic transmission. Conversely, AMPAR activation inhibited action potential-triggered Ca(2+) influx into individual axonal boutons of cerebellar GABAergic interneurons. By suppressing the inhibitory inputs to Purkinje cells, the AMPAR-mediated presynaptic inhibition could thus provide a feed-forward mechanism for the information flow from the cerebellar cortex.


Subject(s)
Cerebellum/cytology , Egtazic Acid/analogs & derivatives , Glycine/analogs & derivatives , Neural Inhibition/physiology , Neurons/physiology , Presynaptic Terminals/physiology , Receptors, AMPA/physiology , Synapses/physiology , gamma-Aminobutyric Acid/metabolism , Action Potentials/drug effects , Animals , Benzothiadiazines/pharmacology , Benzoxazines , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Chelating Agents/pharmacology , Colforsin/pharmacology , Cyclopropanes/pharmacology , Drug Interactions , Egtazic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , GABA Antagonists/pharmacology , Glycine/pharmacology , In Vitro Techniques , Morpholines/pharmacology , Naphthalenes/pharmacology , Neural Inhibition/drug effects , Neurons/drug effects , Piperidines/pharmacology , Presynaptic Terminals/drug effects , Pyrazoles/pharmacology , Rats , Rats, Wistar , Receptors, AMPA/drug effects , Ryanodine/pharmacology , Synapses/drug effects , Triazines/pharmacology , Triazoles/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...