Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncologist ; 28(4): 364-e217, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36640137

ABSTRACT

BACKGROUND: NHS-IL12 is a first-in-class, recombinant fusion protein composed of the human monoclonal antibody NHS76 (binds exposed DNA/histones at sites of intratumoral necrosis) fused to 2 IL-12 heterodimers. The maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of NHS-IL12 monotherapy given subcutaneously (SC) every 4 weeks was previously reported. The study was expanded to include a high-exposure cohort with NHS-IL12 SC every 2 weeks (q2w). METHODS: This single-arm, phase I trial evaluated NHS-IL12 12 µg/kg SC q2w or 16.8µg/kg SC q2w in patients with metastatic solid tumors. The primary endpoint was safety. RESULTS: Using a 3+3 design, 13 patients with advanced cancer were enrolled and 12 were dose-limiting toxicity (DLT) evaluable. There was 1 DLT (Grade 3 aspartate transaminase/alanine transaminase [AST/ALT] elevation). Other grade 3 toxicities included: flu-like symptoms 1/13 (8%), decreased absolute lymphocyte count (ALC) 1/13 (8%), decreased white blood cell count (WBC) 1/13 (8%), but most adverse events reported were low grade and self-limiting grade. Fifty percent of evaluable patients (6/12) experienced stable disease (SD) with 42% (5/12) developing progressive disease (PD) at the first restaging. CONCLUSION: Biweekly NHS-IL12 was well tolerated in this small phase I study. Additional studies incorporating NHS-IL12 with other immunomodulating agents are underway. (ClinicalTrials.gov Identifier: NCT01417546).


Subject(s)
Neoplasms, Second Primary , Neoplasms , Humans , State Medicine , Interleukin-12/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Recombinant Fusion Proteins/therapeutic use
2.
Eur Urol Focus ; 9(3): 447-454, 2023 May.
Article in English | MEDLINE | ID: mdl-36517408

ABSTRACT

BACKGROUND: There is an unmet clinical need for interventions to prevent disease progression in patients with localized prostate cancer on active surveillance (AS). OBJECTIVE: To determine the immunologic response to the PROSTVAC vaccine and the clinical indicators of disease progression in patients with localized prostate cancer on AS. DESIGN, SETTING, AND PARTICIPANTS: This was a phase 2, double-blind, randomized controlled trial in 154 men with low- or intermediate-risk prostate cancer on AS. INTERVENTION: Participants were randomized (2:1) to receive seven doses of subcutaneous PROSTVAC, a vaccinia/fowlpox viral vector-based immunotherapy containing a prostate-specific antigen (PSA) transgene and three T-cell co-stimulatory molecules, or an empty fowlpox vector (EV) over 140 d. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary outcome was the change from baseline in CD4 and CD8 T-cell infiltration in biopsy tumor tissue. Key secondary outcomes were safety and changes in prostate biopsy tumor pathology, peripheral antigen-specific T cells, and serum PSA. Continuous variables were compared using nonparametric tests. Categorical variables were compared using Fisher's exact test. RESULTS AND LIMITATIONS: The PROSTVAC/EV vaccination was well tolerated. All except one participant completed the vaccination series. Changes in CD4 or CD8 density in biopsy tumor tissue did not differ between the PROSTVAC and EV arms. The proportions of patients with Gleason upgrading to grade group 3 after treatment was similar between the arms. There were no differences in postvaccination peripheral T-cell responses or the PSA change from baseline to 6-mo post-treatment follow-up between the groups. CONCLUSIONS: In this first-of-kind trial of immunotherapy in patients on AS for prostate cancer, PROSTVAC did not elicit more favorable prostate tissue or peripheral T-cell responses than the EV. There was no difference between the arms in clinicopathologic effects. Despite the null findings, this is the first study reporting the feasibility and acceptability of an immunotherapy intervention in the AS setting. PATIENT SUMMARY: We looked at responses after an experimental prostate cancer vaccine in patients with prostate cancer on active surveillance (AS). Participants who received the vaccine did not show more favorable outcomes than those receiving the control. Despite these findings, this is the first report showing the feasibility and acceptability of immunotherapy for prostate cancer in patients on AS.


Subject(s)
Cancer Vaccines , Fowlpox , Prostatic Neoplasms , Male , Animals , Humans , Prostate-Specific Antigen , Watchful Waiting , Prostatic Neoplasms/pathology , Disease Progression
3.
Oncologist ; 25(6): 479-e899, 2020 06.
Article in English | MEDLINE | ID: mdl-31594913

ABSTRACT

LESSONS LEARNED: Concurrent ETBX-011, ETBX-051, and ETBX-061 can be safely administered to patients with advanced cancer. All patients developed CD4+ and/or CD8+ T-cell responses after vaccination to at least one tumor-associated antigen (TAA) encoded by the vaccine; 5/6 patients (83%) developed MUC1-specific T cells, 4/6 (67%) developed CEA-specific T cells, and 3/6 (50%) developed brachyury-specific T cells. The presence of adenovirus 5-neutralizing antibodies did not prevent the generation of TAA-specific T cells. BACKGROUND: A novel adenovirus-based vaccine targeting three human tumor-associated antigens-CEA, MUC1, and brachyury-has demonstrated antitumor cytolytic T-cell responses in preclinical animal models of cancer. METHODS: This open-label, phase I trial evaluated concurrent administration of three therapeutic vaccines (ETBX-011 = CEA, ETBX-061 = MUC1 and ETBX-051 = brachyury). All three vaccines used the same modified adenovirus 5 (Ad5) vector backbone and were administered at a single dose level (DL) of 5 × 1011 viral particles (VP) per vector. The vaccine regimen consisting of all three vaccines was given every 3 weeks for three doses then every 8 weeks for up to 1 year. Clinical and immune responses were evaluated. RESULTS: Ten patients enrolled on trial (DL1 = 6 with 4 in the DL1 expansion cohort). All treatment-related adverse events were temporary, self-limiting, grade 1/2 and included injection site reactions and flu-like symptoms. Antigen-specific T cells to MUC1, CEA, and/or brachyury were generated in all patients. There was no evidence of antigenic competition. The administration of the vaccine regimen produced stable disease as the best clinical response. CONCLUSION: Concurrent ETBX-011, ETBX-051, and ETBX-061 can be safely administered to patients with advanced cancer. Further studies of the vaccine regimen in combination with other agents, including immune checkpoint blockade, are planned.


Subject(s)
Cancer Vaccines , Neoplasms , Adenoviridae/genetics , Animals , Carcinoembryonic Antigen , Fetal Proteins , Humans , Immunotherapy , Mucin-1 , Neoplasms/therapy , T-Box Domain Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...