Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenet Insights ; 15: 25168657221130041, 2022.
Article in English | MEDLINE | ID: mdl-36262691

ABSTRACT

MicroRNA(miRNA)s have been identified as an emerging class for therapeutic interventions mainly due to their extracellularly stable presence in humans and animals and their potential for horizontal transmission and action. However, treating Type 2 diabetes mellitus using this technology has yet been in a nascent state. MiRNAs play a significant role in the pathogenesis of Type 2 diabetes mellitus establishing the potential for utilizing miRNA-based therapeutic interventions to treat the disease. Recently, the administration of miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose and lipid metabolism. Further, several cell culture-based interventions have suggested beta cell regeneration potential in miRNAs. Nevertheless, few such miRNA-based therapeutic approaches have reached the clinical phase. Therefore, future research contributions would identify the possibility of miRNA therapeutics for tackling T2DM. This article briefly reported recent developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus, associated implications, gaps, and recommendations for future studies.

2.
Avian Dis ; 61(4): 442-452, 2017 12.
Article in English | MEDLINE | ID: mdl-29337625

ABSTRACT

Infectious bronchitis virus (IBV) is one of the major poultry pathogens of global importance. However, the prevalence of IBV strains in Malaysia is poorly characterized. The partial genomic sequences (6.8 kb) comprising the S-3a/3b-E-M-intergenic region-5a/5b-N gene order of 11 Malaysian IBVs isolated in 2014 and 2015 were sequenced using next-generation sequencing technology. Phylogenetic and pairwise sequence comparison analysis showed that the isolated IBVs are divided into two groups. Group 1 (IBS124/2015, IBS125/2015, IBS126/2015, IBS130/2015, IBS131/2015, IBS138/2015, and IBS142/2015) shared 90%-95% nucleotide and deduced amino acid similarities to the QX-like strain. Among these isolates, IBS142/2015 is the first IBV detected in Sarawak state located in East Malaysia (Borneo Island). Meanwhile, IBV isolates in Group 2 (IBS037A/2015, IBS037B/2015, IBS051/2015, and IBS180/2015) were 91.62% and 89.09% identical to Malaysian variant strain MH5365/95 (EU086600) at nucleotide and amino acid levels, respectively. In addition, all studied IBVs were distinctly separate from Massachusetts (70%-72% amino acid similarity) and European strains including 793/B, Italy-02, and D274 (68%-73% amino acid similarity). Viruses in Group 1 have the insertion of three amino acids at positions 23, 121, and 122 of the S1 protein and recombinant events detected at nucleotide position 4354-5864, with major parental sequence derived from QX-like (CK-CH-IBYZ-2011) and a minor parental sequence derived from Massachusetts vaccine strain (H120). This study demonstrated coexistence of the IBV Malaysian variant strain along with the QX-like strain in Malaysia.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Gene Order , Genome, Viral , Infectious bronchitis virus/genetics , Poultry Diseases/epidemiology , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , DNA, Intergenic , Malaysia/epidemiology , Phylogeny , Poultry Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...