Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25266637

ABSTRACT

Rheological characterization of physically crosslinked peptide- and protein-based hydrogels is widely reported in the literature. In this review, we focus on solid injectable hydrogels, which are commonly referred to as 'shear-thinning and rehealing' materials. This class of what sometimes also are called 'yield-stress' materials holds exciting promise for biomedical applications that require well-defined morphological and mechanical properties after delivery to a desired site through a shearing process (e.g., syringe or catheter injection). In addition to the review of recent studies using common rheometric measurements on peptide- and protein-based, physically crosslinked hydrogels, we provide experimentally obtained visual evidence, using a rheo-confocal microscope, of the fracture and subsequent flow of physically crosslinked ß-hairpin peptide hydrogels under steady-state shear mimicking commonly conducted experimental conditions using bench-top rheometers. The observed fracture demonstrates that the supposed bulk shear-thinning and rehealing behavior of physical gels can be limited to the yielding of a hydrogel layer close to the shearing surface with the bulk of the hydrogel below experiencing negligible shear. We suggest some measures to be taken while acquiring and interpreting data using bench-top rheometers with a particular focus on physical hydrogels. In particular, the use of confocal-rheometer assembly is intended to inspire studies on yielding behavior of hydrogels perceived as shear-thinning and rehealing materials. A deeper insight into their yielding behavior will lead to the development of yield-stress, injectable, solid biomaterials, and hopefully inspire the design of new shear-thinning and rehealing hydrogels and more thorough physical characterization of such systems. Finally, more examples of bulk fracture in some physical hydrogels based on peptides and proteins are explored in the light of their behavior as yield-stress materials.


Subject(s)
Hydrogels/chemistry , Peptides/chemistry , Proteins/chemistry , Rheology , Calibration , Cross-Linking Reagents/chemistry , Cryoelectron Microscopy , Elastin/chemistry , Humans , Hydrogen-Ion Concentration , Microscopy, Confocal , Microscopy, Electron, Transmission , Oscillometry , Protein Structure, Secondary , Shear Strength , Stress, Mechanical , Video Recording
2.
Macromol Biosci ; 15(3): 342-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25333420

ABSTRACT

Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3-4 d in contrast to 3 h, and that blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly the inflammatory cytokine, TNF-α, in vitro without negative effects.


Subject(s)
Anhydrides/chemistry , Anti-Inflammatory Agents/therapeutic use , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Inflammation/drug therapy , Polyesters/chemistry , Povidone/chemistry , Salicylic Acid/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Elastic Modulus/drug effects , Humans , Hydrolysis , Mice , Rheology/drug effects , Salicylic Acid/pharmacology , Transition Temperature , Tumor Necrosis Factor-alpha/metabolism
3.
Biomacromolecules ; 15(11): 3891-900, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25251904

ABSTRACT

The MAX1 ß-hairpin peptide (VKVKVKVK-V(D)PPT-KVKVKVKV-NH2) has been shown to form nanofibrils having a cross-section of two folded peptides forming a hydrophobic, valine-rich core, and the polymerized fibril exhibits primarily ß-sheet hydrogen bonding.1-7 These nanofibrils form hydrogel networks through fibril entanglements as well as fibril branching.8 Fibrillar branching in MAX1 hydrogel networks provide the ability to flow under applied shear stress and immediately reform a hydrogel solid on cessation of shear. New ß-hairpins were designed to limit branching during nanofibril growth because of steric specificity in the assembled fibril hydrophobic core. The nonturn valines of MAX1 were substituted by 2-naphthylalanine (Nal) and alanine (A) residues, with much larger and smaller side chain volumes, respectively, to obtain LNK1 (Nal)K(Nal)KAKAK-V(D)PPT-KAKAK(Nal)K(Nal)-NH2. LNK1 was targeted to self-associate with a specific "lock and key" complementary packing in the hydrophobic core in order to accommodate the Nal and Ala residue side chains. The experimentally observable manifestation of reduced fibrillar branching in the LNK1 peptide is the lack of solid hydrogel formation after shear in stark contrast to the MAX1 branched fibril system. Molecular dynamics simulations provide a molecular picture of interpeptide interactions within the assembly that is consistent with the branching propensity of MAX1 vs LNK1 and in agreement with experimental observations.


Subject(s)
Chemical Engineering/methods , Hydrogels/chemistry , Hydrophobic and Hydrophilic Interactions , Peptide Fragments/chemistry , Hydrogels/metabolism , Peptide Fragments/metabolism , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...