Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (184)2022 06 16.
Article in English | MEDLINE | ID: mdl-35781280

ABSTRACT

Cell-matrix interactions mediate complex physiological processes through biochemical, mechanical, and geometrical cues, influencing pathological changes and therapeutic responses. Accounting for matrix effects earlier in the drug development pipeline is expected to increase the likelihood of clinical success of novel therapeutics. Biomaterial-based strategies recapitulating specific tissue microenvironments in 3D cell culture exist but integrating these with the 2D culture methods primarily used for drug screening has been challenging. Thus, the protocol presented here details the development of methods for 3D culture within miniaturized biomaterial matrices in a multi-well plate format to facilitate integration with existing drug screening pipelines and conventional assays for cell viability. Since the matrix features critical for preserving clinically relevant phenotypes in cultured cells are expected to be highly tissue- and disease-specific, combinatorial screening of matrix parameters will be necessary to identify appropriate conditions for specific applications. The methods described here use a miniaturized culture format to assess cancer cell responses to orthogonal variation of matrix mechanics and ligand presentation. Specifically, this study demonstrates the use of this platform to investigate the effects of matrix parameters on the responses of patient-derived glioblastoma (GBM) cells to chemotherapy.


Subject(s)
Glioblastoma , Hydrogels , Biocompatible Materials/pharmacology , Cell Survival , Cells, Cultured , Glioblastoma/drug therapy , Humans , Hydrogels/pharmacology , Tumor Microenvironment
2.
Radiol Case Rep ; 17(7): 2432-2436, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35586168

ABSTRACT

Accessory articulation between the transverse processes of the C6 and C7 vertebrae is an extremely rare anatomic variant that has only been previously described in two instances. In this report, we present the case of a 25-year-old male who sustained numerous injuries associated with a physical assault. A CT study of the cervical spine revealed a linear lucency mimicking a fracture but found on closer inspection to represent an accessory articulation between the anterior tubercles of the right transverse processes of the C6 and C7 vertebrae. In this report, we summarize this patient's clinical course, and provide an up-to-date review of the current literature, imaging characteristics, and potential mechanisms of the development of this anatomic variant. Our case also includes an incomplete version of the anomaly contralaterally as well as features of secondary osseous stress hypertrophy; these features have not been previously described and may aid in diagnosis. Finally, we provide the first-ever augmented reality model of this variant to fully convey its geometry and facilitate its unequivocal identification.

3.
APL Bioeng ; 5(1): 016104, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33728392

ABSTRACT

Biomaterials are being developed as therapeutics for spinal cord injury (SCI) that can stabilize and bridge acute lesions and mediate the delivery of transgenes, providing a localized and sustained reservoir of regenerative factors. For clinical use, direct injection of biomaterial scaffolds is preferred to enable conformation to unique lesions and minimize tissue damage. While an interconnected network of cell-sized macropores is necessary for rapid host cell infiltration into-and thus integration of host tissue with-implanted scaffolds, injectable biomaterials have generally suffered from a lack of control over the macrostructure. As genetic vectors have short lifetimes in vivo, rapid host cell infiltration into scaffolds is a prerequisite for efficient biomaterial-mediated delivery of transgenes. We present scaffolds that can be injected and assembled in situ from hyaluronic acid (HA)-based, spherical microparticles to form scaffolds with a network of macropores (∼10 µm). The results demonstrate that addition of regularly sized macropores to traditional hydrogel scaffolds, which have nanopores (∼10 nm), significantly increases the expression of locally delivered transgene to the spinal cord after a thoracic injury. Maximal cell and axon infiltration into scaffolds was observed in scaffolds with more regularly sized macropores. The delivery of lentiviral vectors encoding the brain-derived neurotrophic factor (BDNF), but not neurotrophin-3, from these scaffolds further increased total numbers and myelination of infiltrating axons. Modest improvements to the hindlimb function were observed with BDNF delivery. The results demonstrate the utility of macroporous and injectable HA scaffolds as a platform for localized gene therapies after SCI.

4.
Cell Mol Bioeng ; 12(5): 399-413, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31719923

ABSTRACT

INTRODUCTION: Biomaterials can provide localized reservoirs for controlled release of therapeutic biomolecules and drugs for applications in tissue engineering and regenerative medicine. As carriers of gene-based therapies, biomaterial scaffolds can improve efficiency and delivery-site localization of transgene expression. Controlled delivery of gene therapy vectors from scaffolds requires cell-scale macropores to facilitate rapid host cell infiltration. Recently, advanced methods have been developed to form injectable scaffolds containing cell-scale macropores. However, relative efficacy of in vivo gene delivery from scaffolds formulated using these general approaches has not been previously investigated. Using two of these methods, we fabricated scaffolds based on hyaluronic acid (HA) and compared how their unique, macroporous architectures affected their respective abilities to deliver transgenes via lentiviral vectors in vivo. METHODS: Three types of scaffolds-nanoporous HA hydrogels (NP-HA), annealed HA microparticles (HA-MP) and nanoporous HA hydrogels containing protease-degradable poly(ethylene glycol) (PEG) microparticles as sacrificial porogens (PEG-MP)-were loaded with lentiviral particles encoding reporter transgenes and injected into mouse mammary fat. Scaffolds were evaluated for their ability to induce rapid infiltration of host cells and subsequent transgene expression. RESULTS: Cell densities in scaffolds, distances into which cells penetrated scaffolds, and transgene expression levels significantly increased with delivery from HA-MP, compared to NP-HA and PEG-MP, scaffolds. Nearly 8-fold greater cell densities and up to 16-fold greater transgene expression levels were found in HA-MP, over NP-HA, scaffolds. Cell profiling revealed that within HA-MP scaffolds, macrophages (F4/80+), fibroblasts (ERTR7+) and endothelial cells (CD31+) were each present and expressed delivered transgene. CONCLUSIONS: Results demonstrate that injectable scaffolds containing cell-scale macropores in an open, interconnected architecture support rapid host cell infiltration to improve efficiency of biomaterial-mediated gene delivery.

5.
Cell Transplant ; 28(7): 967-972, 2019 07.
Article in English | MEDLINE | ID: mdl-31037984

ABSTRACT

The limited availability of human islets has led to the examination of porcine islets as a source of clinically suitable tissue for transplantation in patients with diabetes mellitus. Islets from porcine donors are commonly used in both in vitro and in vivo experiments studying diabetes mellitus. However, there are significant differences in quality and quantity of islet yield depending on donor pig age, as well as substantial differences in the costs of pancreas procurement in adult versus neonatal and juvenile pigs. In this study, we compared the total cost per islet of juvenile pig pancreata with that of neonatal and adult pigs. Although adult porcine pancreata yield, on average, more than five times the amount of islets than do juvenile and neonatal pancreata, we found that the high price of adult pigs led to the cost per islet being more than twice that of juvenile and neonatal islets (US $0.09 vs $0.04 and $0.02, respectively). In addition, neonatal and juvenile islets are advantageous in their scalability and retention of viability after culture. Our findings indicate that isolating neonatal and juvenile porcine islets is more cost-effective and scalable than isolating adult porcine islets.


Subject(s)
Islets of Langerhans Transplantation/economics , Islets of Langerhans Transplantation/methods , Islets of Langerhans/surgery , Animals , Diabetes Mellitus, Type 1/surgery , Male , Swine , Transplantation, Heterologous/economics , Transplantation, Heterologous/methods
6.
J Diet Suppl ; 16(4): 454-462, 2019.
Article in English | MEDLINE | ID: mdl-29958040

ABSTRACT

Cycloferin is an extract of the chemicals from the Cyclopia species, which grows only in small areas in the southwest and southeast of South Africa and has been consumed traditionally as a nourishing tea to treat numerous health issues and illnesses. Previous studies report that some of the active compounds in Cycloferin, such as pinitol (a modified sugar) and mangiferin (a glucoside), may reduce blood sugar levels and therefore may be used as a treatment for diabetes. Mangiferin, in particular, has been shown to stimulate carbohydrate oxidation and alleviate some effects of insulin resistance and hyperglycemia. Other active components of Cycloferin include flavones, isoflavones, coumestans, luteolin, 4-hydroxycinnamic acid, polyphenols, and xanthones. These active compounds are antioxidants, which can enhance glucose breakdown, lower blood lipids, and reduce the number of highly reactive compounds known as free radicals, which can alter cellular structure and function when present in large amounts. In this study, we explored the ameliorative effects of Cycloferin by treating streptozotocin- (STZ) injected rats with Cycloferin and evaluating its long-term and short-term effect on blood glucose levels and kidney and liver conditions of the diabetic-rendered rats. Our results demonstrated the ability of Cycloferin to both lower the blood glucose levels and reduce evidence of damage in kidney and liver in diabetic rats with and without exogenous insulin treatment for partial control of diabetic state.


Subject(s)
Cyclopia Plant/chemistry , Diabetes Mellitus, Experimental/drug therapy , Insulin/therapeutic use , Plant Extracts/administration & dosage , Animals , Blood Glucose/analysis , Diabetes Mellitus, Experimental/complications , Dietary Supplements , Inositol/administration & dosage , Inositol/analogs & derivatives , Inositol/analysis , Inositol/pharmacology , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Liver Diseases/pathology , Liver Diseases/prevention & control , Male , Phytotherapy , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Xanthones/administration & dosage , Xanthones/analysis , Xanthones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...