Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 21(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924686

ABSTRACT

In this paper, we investigate the performance of a vehicular visible light communications (VVLC) link with a non-collimated and incoherent light source (a light-emitting diode) as the transmitter (Tx), and two different optical receiver (Rx) types (a camera and photodiode (PD)) under atmospheric turbulence (AT) conditions with aperture averaging (AA). First, we present simulation results indicating performance improvements in the signal-to-noise ratio (SNR) under AT with AA with increasing size of the optical concentrator. Experimental investigations demonstrate the potency of AA in mitigating the induced signal fading due to the weak to moderate AT regimes in a VVLC system. The experimental results obtained with AA show that the link's performance was stable in terms of the average SNR and the peak SNR for the PD and camera-based Rx links, respectively with <1 dB SNR penalty for both Rxs, as the strength of AT increases compared with the link with no AT.

2.
Sci Rep ; 8(1): 12683, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30139946

ABSTRACT

The multiplexing capacity of conventional fluorescence materials are significantly limited by spectral overlap and background interference, mainly due to their short-lived fluorescence lifetimes. Here, we adopt a novel Gd3+ doping strategy in NaYF4 host materials, realized tuning of upconversion photoluminescence (UCPL) lifetimes at selective emissions. Time-correlated single-photon counting (TCSPC), was applied to measure the photoluminescence lifetimes accurately. We demonstrated the large dynamic range of lifetimes of upconversion nanoparticles with good upconversion quantum yields, mainly owing to the dominance of high efficient energy transfer upconversion mechanism. The exceptional tunable properties of upconversion materials allow great potential for them to be utilized in biotechnology and life sciences.


Subject(s)
Erbium/chemistry , Lanthanoid Series Elements/chemistry , Nanoparticles/chemistry , Ytterbium/chemistry , Yttrium/chemistry , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure
3.
Nature ; 555(7697): 493-496, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29565362

ABSTRACT

The maser-the microwave progenitor of the optical laser-has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen-vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

4.
Opt Express ; 26(24): 31129-31136, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30650703

ABSTRACT

High resolution spectroscopy, metrology and quantum technologies (e.g. trapping and cooling) require precision laser sources with narrow linewidth and wavelength tunability. The widespread use of these lasers will be promoted if they are cost-effective, compact and efficient. Alexandrite lasers with a broad tuning band pumped efficiently by low-cost red diodes are a potential candidate, but full performance as a precision light source has not been fully achieved. We present in this work the first continuous-wave (CW) and single-frequency operation of a unidirectional diode-end-pumped Alexandrite ring laser with wavelength tunability. An ultra-compact bow-tie ring cavity is developed with astigmatic compensation and a novel 'displaced mode' design producing CW output power > 1 W in excellent TEM00 mode (M2 < 1.2) when using a low brightness pump (M2 ≥ 30). Wavelength tuning from 727 - 792 nm is demonstrated using a birefringent filter plate. This successful operation opens the prospects of precision light source applications.

5.
Opt Express ; 25(12): 13714-13727, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788914

ABSTRACT

A luminescent concentrator functioning as a bright source of yellow light is reported. It comprises a waveguide made of cerium-doped YAG crystal, in the form of a long-thin rectangular strip, surrounded by flowing air and optically pumped from both sides with blue light from arrays of high-efficiency InGaN LEDs. Phosphor-converted yellow light, generated within the strip, is guided to a glass taper that is butt-coupled to one of the strip's end faces. Up to 20 W of optical power, centered on 575 nm with a linewidth of 76 nm, can be continuously radiated into air from the taper's 1.67 mm × 1.67 mm square output aperture. The intensity of the outputted light is significantly greater than what any yellow (AlGaInP) LED can directly produce (either singly or arrayed), with only a modest increase in linewidth. Furthermore, the wall-plug efficiency of the source exceeds that of any yellow laser. The concept allows for further substantial increases in intensity, total output power and wall-plug efficiency through scaling-up and engineering refinements.

6.
Sci Rep ; 7: 41836, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169331

ABSTRACT

The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule.

7.
Beilstein J Nanotechnol ; 7: 751-7, 2016.
Article in English | MEDLINE | ID: mdl-27335763

ABSTRACT

In this paper we report the design and experimental realisation of a novel refractive index sensor based on coupling between three nanoscale stripe waveguides. The sensor is highly compact and designed to operate at a single wavelength. We demonstrate that the sensor exhibits linear response with a resolution of 6 × 10(-4) RIU (refractive index unit) for a change in relative output intensity of 1%. Authors expect that the outcome of this paper will prove beneficial in highly compact, label-free and highly sensitive refractive index analysis.

8.
Nat Commun ; 6: 6215, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25698634

ABSTRACT

Recently, the world's first room-temperature maser was demonstrated. The maser consisted of a sapphire ring housing a crystal of pentacene-doped p-terphenyl, pumped by a pulsed rhodamine-dye laser. Stimulated emission of microwaves was aided by the high quality factor and small magnetic mode volume of the maser cavity yet the peak optical pumping power was 1.4 kW. Here we report dramatic miniaturization and 2 orders of magnitude reduction in optical pumping power for a room-temperature maser by coupling a strontium titanate resonator with the spin-polarized population inversion provided by triplet states in an optically excited pentacene-doped p-terphenyl crystal. We observe maser emission in a thimble-sized resonator using a xenon flash lamp as an optical pump source with peak optical power of 70 W. This is a significant step towards the goal of continuous maser operation.

9.
Opt Express ; 21(10): 12309-17, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736449

ABSTRACT

Residual amplitude modulation (RAM) is an unwanted noise source in electro-optic phase modulators. The analysis presented shows that while the magnitude of the RAM produced by a MgO:LiNbO(3) modulator increases with intensity, its associated phase becomes less well defined. This combination results in temporal fluctuations in RAM that increase with intensity. This behavior is explained by the presented phenomenological model based on gradually evolving photorefractive scattering centers randomly distributed throughout the optically thick medium. This understanding is exploited to show that RAM can be reduced to below the 10(-5) level by introducing an intense optical beam to erase the photorefractive scatter.


Subject(s)
Artifacts , Electronics/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis
10.
Appl Opt ; 51(16): 3684-91, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22695610

ABSTRACT

Residual amplitude modulation (RAM) mechanisms in electro-optic phase modulators are detrimental in applications that require high purity phase modulation of the incident laser beam. While the origins of RAM are not fully understood, measurements have revealed that it depends on the beam properties of the laser as well as the properties of the medium. Here we present experimental and theoretical results that demonstrate, for the first time, the dependence of RAM production in electro-optic phase modulators on beam intensity. The results show an order of magnitude increase in the level of RAM, around 10 dB, with a fifteenfold enhancement in the input intensity from 12 to 190 mW/mm2. We show that this intensity dependent RAM is photorefractive in origin.

SELECTION OF CITATIONS
SEARCH DETAIL
...