Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
Nat Prod Res ; : 1-2, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949775
3.
Nat Prod Res ; : 1-2, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967107

ABSTRACT

The COVID-19 pandemic has driven the search for new therapeutic agents against SARS-CoV-2. Natural products have shown promise as sources of bioactive compounds with antiviral properties. This letter highlights the potential of these compounds in developing effective COVID-19 therapies. Quercetin, found in fruits and vegetables, has demonstrated antiviral activity by inhibiting viral replication. Glycyrrhizin, from licorice root, can modulate host cell signaling to inhibit SARS-CoV-2 replication. Curcumin, from turmeric, disrupts the interaction between the virus's spike protein and the ACE2 receptor, preventing viral entry. Additionally, compounds like resveratrol possess immunomodulatory properties that can reduce the hyperinflammatory response in severe COVID-19. Despite these promising findings, the variability of natural extracts and potential side effects necessitate rigorous clinical trials. Natural product-derived bioactive compounds represent a promising avenue for novel COVID-19 therapies, warranting further investigation and clinical validation to uncover effective treatments and enhance preparedness for future outbreaks.

4.
Bioorg Chem ; 151: 107649, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39029321

ABSTRACT

Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.

7.
Nat Prod Res ; : 1-3, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884119

ABSTRACT

Researchers are exploring brown algae as a source of potential treatments for Oral Squamous Cell Carcinoma (OSCC), a prevalent and aggressive form of oral cancer. Brown algae are rich in bioactive compounds, including polyphenols, carotenoids, fatty acids, and polysaccharides, which show promise in inhibiting cancer cell growth and inducing apoptosis. These compounds work through various mechanisms such as cell cycle arrest, apoptotic cell death, and inhibition of angiogenesis. Fucoxanthin and fucoidan, found in brown algae, have shown significant anti-OSCC properties by targeting specific pathways involved in cancer progression. Additionally, celecoxibloaded chitosan-fucoidan nanoparticles demonstrate potential in multiple pathways for OSCC treatment. Challenges in translating these findings into clinical applications include the need for further preclinical studies, efficient extraction methods, and clinical trials for safety and efficacy assessment. Despite challenges, brown algal compounds offer a promising avenue for developing novel and effective OSCC therapies, drawing from the ancient wisdom of the sea.

8.
Sci Total Environ ; 941: 173679, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38844221

ABSTRACT

Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.


Subject(s)
Charcoal , Environmental Restoration and Remediation , Hydrocarbons , Petroleum , Soil Pollutants , Charcoal/chemistry , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Biodegradation, Environmental , Petroleum Pollution , Soil/chemistry
9.
Bioorg Chem ; 148: 107465, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761705

ABSTRACT

Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.


Subject(s)
Anti-Bacterial Agents , Quorum Sensing , Staphylococcus aureus , Quorum Sensing/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Humans , Signal Transduction/drug effects , Molecular Structure , Biological Products/pharmacology , Biological Products/chemistry
10.
ACS Omega ; 9(13): 15239-15250, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585078

ABSTRACT

A novel integrated electrochemical oxidation (EO) and bacterial degradation (BD) technique was employed for the remediation of the chloropyridinyl and chlorothiazolyl classes of neonicotinoid (NEO) insecticides in the environment. Imidacloprid (IM), clothianidin (CL), acetamiprid (AC), and thiamethoxam (TH) were chosen as the target NEOs. Pseudomonas oleovorans SA2, identified through 16S rRNA gene analysis, exhibited the potential for BD. In EO, for the selected NEOs, the total percentage of chemical oxygen demand (COD) was noted in a range of 58-69%, respectively. Subsequently, in the biodegradation of EO-treated NEOs (BEO) phase, a higher percentage (80%) of total organic carbon removal was achieved. The optimum concentration of NEOs was found to be 200 ppm (62%) for EO, while for BEO, the COD efficiency was increased up to 79%. Fourier-transform infrared spectroscopy confirms that the heterocyclic group and aromatic ring were degraded in the EO and further utilized by SA2. Gas chromatography-mass spectroscopy indicated up to 96% degradation of IM and other NEOs in BD (BEO) compared to that of EO (73%). New intermediate molecules such as silanediamine, 1,1-dimethyl-n,n'-diphenyl produced during the EO process served as carbon sources for bacterial growth and further mineralized. As a result, BEO enhanced the removal of NEOs with a higher efficiency of COD and a lower consumption of energy. The removal efficiency of the NEOs by the integrated approach was achieved in the order of AC > CL > IM > TH. This synergistic EO and BD approach holds promise for the efficient detoxification of NEOs from polluted environments.

11.
Int J Biol Macromol ; 254(Pt 2): 127861, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939761

ABSTRACT

Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.


Subject(s)
Pseudomonas aeruginosa , Quorum Sensing , Humans , Biofilms , Signal Transduction , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism
12.
Environ Res ; 241: 117666, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37984787

ABSTRACT

Over the past few years, it has become increasingly evident that microplastic pollutant heavily contaminates water sources, posing a potential threat to both human and wildlife. These plastic pollutants do not get degraded efficiently by natural processes and the existing traditional treatment methods are incapable of fully eradicating them. In this regard, degradation of microplastic contaminants through photocatalytic methods has emerged as a powerful technique. Unfortunately, only a limited number of investigations have been reported in the field of photocatalytic degradation of microplastics. This comprehensive assessment focuses on the detailed analysis of the latest cutting edge engineered technologies aimed at efficiently separating, identifying microplastic contaminants present in food samples and degrading them through photocatalysis. Moreover, detailed information on various instrumental techniques that can be adopted to analyze the isolated micro sized plastic particles has been discussed. The assessment and degradation of these micro contaminants through photocatalytic methods is still in juvenile stage and there are lot of rooms to be explored. The need for profound contemplation on methods to degrade them through photocatalytic approaches as well as their possible health risks to humans motivated us to bring out this review.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Microplastics , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Pollutants/analysis , Risk Assessment , Environmental Monitoring
13.
Chemosphere ; 345: 140516, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37879370

ABSTRACT

Azo dyes are the most varied class of synthetic chemicals with non-degradable characteristics. They are complex compounds made up of many different parts. It was primarily utilized for various application procedures in the dyeing industry. Therefore, it's crucial to develop an economical and environmentally friendly approach to treating azo dyes. Our present investigation is an integrated approach to the electrooxidation (EO) process of azo dyes using RuO2-IrO2-TiO2 (anode) and titanium mesh (cathode) electrodes, followed by the biodegradation process (BD) of the treated EO dyes. Chemical oxygen demand (COD) removal efficiency as follows MB (55%) ≥ MR (45%) ≥ TB (38%) ≥ CR (37%) correspondingly. The fragment generated during the degradation process which was identified with high-resolution mass spectrometry (HRMS) and its degradation mechanism pathway was proposed as demethylation reaction and N-N and C-N/C-S cleavage reaction occurs during EO. In biodegradation studies by Aeromonas hydrophila AR1, the EO treated dyes were completely mineralized aerobically which was evident by the COD removal efficiency as MB (98%) ≥ MR (92.9%) ≥ TB (88%) ≥ CR (87%) respectively. The EO process of dyes produced intermediate components with lower molecular weights, which was effectively utilized by the Aeromonas hydrophila AR1 and resulted in higher degradation efficiency 98%. We reported the significance of the enhanced approach of electrochemical oxidation with biodegradation studies in the effective removal of the pollutants in dye industrial effluent contaminated water environment.


Subject(s)
Aeromonas hydrophila , Water Pollutants, Chemical , Azo Compounds/chemistry , Oxidation-Reduction , Titanium/chemistry , Coloring Agents/chemistry , Electrodes , Water Pollutants, Chemical/analysis
14.
Environ Res ; 235: 116558, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37437864

ABSTRACT

Ciprofloxacin is one of the antibiotics predominantly used to treat bacterial infections, however excess usage, and release of antibiotic from various sources to the environment can cause severe risks to human health since it was considered as emerging pollutant. This study deals with the intimately coupled photocatalysis and biodegradation (ICPB) of ciprofloxacin using gC3N4/CdS photocatalytic semiconductor and eco-friendly renewable loofah sponge as biocarrier in the ICPB. The photocatalyst gC3N4/CdS was prepared and their synergistic photocatalytic degradation of ciprofloxacin were assessed and the results shows that gC3N4/CdS (20%) exhibit 79% degradation efficiency in 36 h. Further ICPB exhibited enhanced ciprofloxacin degradation 95% at 36 h. The 62.4% and 81.1% of chemical oxygen demand (COD) removal was obtained in the photocatalysis and ICPB respectively. Enhanced degradation of ciprofloxacin and COD removal was due to the synergetic photoelectrons generated from the gC3N4/CdS (20%) transferred to the bacterial communities which intensely mineralize the degradation products produced from the photocatalysis process. Furthermore, production of hydroxyl •OH and superoxide radical anion O2• were identified actively involved in the degradation of ciprofloxacin. The biocarrier loofah sponge provided favourable environment to the bacterial communities for the formation of biofilm and production of extracellular polymeric substances (EPS). Excess quantity of EPS production in the ICPB helps in the prevention of toxicity of photocatalyst to bacterial communities as well as facilitate the extracellular electron transfer process. This work provides a novel path for enhanced degradation of ciprofloxacin using eco-friendly, low cost and renewable biocarrier loofah sponge in the ICPB system.


Subject(s)
Ciprofloxacin , Luffa , Humans , Anti-Bacterial Agents , Biodegradation, Environmental , Catalysis
15.
Chemosphere ; 336: 139210, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315856

ABSTRACT

Triclosan is considered as recalcitrant contaminant difficult to degrade from the contaminated wastewater. Thus, promising, and sustainable treatment method is necessary to remove triclosan from the wastewater. Intimately coupled photocatalysis and biodegradation (ICPB) is an emerging, low-cost, efficient, and eco-friendly method for the removal of recalcitrant pollutants. In this study BiOI photocatalyst coated bacterial biofilm developed at carbon felt for efficient degradation and mineralization of triclosan was studied. Based on the characterization of BiOI prepared using methanol had lower band gap 1.85 eV which favors lower recombination of electron-hole pair and higher charge separation which ascribed to enhanced photocatalytic activity. ICPB exhibits 89% of triclosan degradation under direct sunlight exposure. The results showed that production of reactive oxygen species hydroxyl radical and superoxide radical anion played crucial role in the degradation of triclosan into biodegradable metabolites further the bacterial communities mineralized the biodegradable metabolites into water and carbon dioxide. The confocal laser scanning electron microscope results emphasized that interior of the biocarrier shows a large number of live bacterial cells existing in the photocatalyst-coated carrier, where the little toxic effect on bacterial biofilm occurred on the exterior of the carrier. The extracellular polymeric substances characterization result remarkable confirms that which could act as sacrificial agent of photoholes further helped by preventing the toxicity to the bacterial biofilm from the reactive oxygen species and triclosan. Hence, this promising approach can be a possible alternative method for the wastewater treatment polluted with triclosan.


Subject(s)
Sunlight , Triclosan , Wastewater , Reactive Oxygen Species , Titanium , Biodegradation, Environmental , Catalysis
16.
Chemosphere ; 331: 138816, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37146779

ABSTRACT

Textile effluent contains a highly toxic and refractory azo dyes. Eco-friendly method for efficient decolorization and degradation of textile effluent is essential. In the present study, treatment of textile effluent was carried through sequential electro oxidation (EO) and photo electro oxidation (PEO) using RuO2-IrO2 coated titanium electrode as an anode and cathode followed by biodegradation. The pre-treatment of textile effluent by photo electro oxidation for 14 h exhibited 92% of decolorization. Subsequent biodegradation of the pre-treated textile effluent enhanced the reduction of chemical oxygen demand to 90%. Metagenomics results exhibited that Flavobacterium, Dietzia, Curtobacterium, Mesorhizobium, Sphingobium, Streptococcus, Enterococcus, Prevotellaand Stenotrophomonas bacterial communities majorly involved in the biodegradation of textile effluent. Hence, integrating sequential photo electro oxidation and biodegradation proposed an efficient and eco-friendly approach for treating textile effluent.


Subject(s)
Actinomycetales , Bacteria , Biodegradation, Environmental , Bacteria/genetics , Bacteria/metabolism , Textiles , Oxidation-Reduction , Actinomycetales/metabolism , Azo Compounds , Coloring Agents/metabolism , Textile Industry
17.
Environ Res ; 223: 115407, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36746208

ABSTRACT

A practical photocatalytic method using efficient and nontoxic is crucial for wastewater treatment technology. The present study deals with the preparation of BiPO4/Ag3PO4@rGO heterojunction through hydrothermal process and utilized it for efficient degradation and detoxification of Tetracycline (TCL) antibiotic. The prepared composite was characterized by X-ray diffraction, UV-vis DRS spectroscopy, Scanning electron microscope (SEM), Transmission electron microscope (TEM) and XPS (X-ray photoelectron spectroscopy). From our study, it was evident that the addition of Ag3PO4 extensively improved the photocatalytic efficiency of BiPO4 with a degradation of the rate of 94.6% (k = 0.01783 min-1) towards TCL under visible light within 90 min irradiation. The heterojunction energy-band theory has been adopted to understand the mechanism of degradation. The improved efficiency was ascribed to the excellent charge transfer between the interface of p-n heterojunction and the improvement in the absorption of light. Furthermore, LC/ESI-MS/MS (liquid chromatography-electrospray ionization tandem mass spectrometry) carried out TCL degradation product identification to propose the degradation pathway. The biotoxicity assessment studies revealed that effective detoxification was observed during degradation. Thus, this work extends new methods for developing new BiPO4-based heterojunction composites to meet the requirements for remediation of a contaminated aqueous environment.


Subject(s)
Anti-Bacterial Agents , Tandem Mass Spectrometry , Catalysis , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry
18.
Environ Res ; 214(Pt 1): 113824, 2022 11.
Article in English | MEDLINE | ID: mdl-35830909

ABSTRACT

In recent years, wide spread of antibiotic-resistant microorganisms and genes emerging globally, an eco-friendly method for efficient degradation of antibiotics from the polluted environment is essential. Intimately coupled photocatalysis and biodegradation (ICPB) using gC3N4 for enhanced degradation of sulfamethoxazole (SMX) was investigated. The gC3N4 were prepared and coated on the carbon felt. The mixed culture biofilm was developed on the surface as a biocarrier. The photocatalytic degradation showed 74%, and ICPB exhibited 95% SMX degradation efficiency. ICPB showed superior visible light adsorption, photocatalytic activity, and reduced charge recombination. The electron paramagnetic resonance spectrum confirms that the generation of •OH and O2• radicals actively participated in the degradation of SMX into biodegradable intermediated compounds, and then, the bacterial communities present in the biofilm mineralized the biodegradable compound into carbon dioxide and water. Moreover, the addition of NO3-, PO4-, and Cl- significantly enhanced the degradation efficiency by trapping the surface electron. Stability experiments confirmed that gC3N4 biohybrid can maintain 85% SMX degradation efficiency after 5 consecutive recycling. Extracellular polymeric substances characterization results show that biohybrid contains 47 mg/L, 14 mg/L, and 13 mg/L protein, carbohydrate, and humic acid, respectively, which can protect the bacterial communities from the antibiotic toxicity and reactive oxygen species. Furthermore, biotoxicity was investigated using degradation products on E.coli and results revealed 83% detoxification efficiency. Overall, this study suggested that gC3N4 photocatalyst in an ICPB can be used as a promising eco-friendly method to degrade sulfamethoxazole efficiently.


Subject(s)
Sulfamethoxazole , Titanium , Anti-Bacterial Agents , Bacteria , Biodegradation, Environmental , Biofilms
19.
Environ Pollut ; 307: 119412, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35568287

ABSTRACT

Synthetic azo dyes are extensively used in the textile industries, which are being released as textile effluent into the environment presence of azo dyes in the environment is great environmental concern therefore treatment of textile effluent is crucial for proper release of the effluent into the environment. Electrochemical oxidation (EO) is extensively used in the degradation of pollutants because of its high efficiency. In this study, photo-assisted electrooxidation (PEO) followed by biodegradation of the textile effluent was evaluated. The pretreatment of textile effluent was conducted by EO and PEO in a tubular flow cell with TiO2-Ti/IrO2-RuO2 anode and titanium cathode under different current densities (10, 15, and 20 mA cm-2). The chemical oxygen demand level reduced from 3150 mg L-1 to 1300 and 600 mg L-1under EO and PEO, respectively. Furthermore, biodegradation of EO and PEO pretreated textile effluent shows reduction in chemical oxygen demand (COD) from 1300 mg L-1 to 900 mg L-1and 600 mg L-1to 110 mg L-1, respectively. The most abundant genera were identified as Acetobacter, Achromobacter, Acidaminococcus, Actinomyces, and Acetomicrobium from the textile effluent. This study suggests that an integrated approach of PEO and subsequent biodegradation might be an effective and eco-friendly method for the degradation of textile effluent.


Subject(s)
Textile Industry , Water Pollutants, Chemical , Azo Compounds , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Coloring Agents , Electrodes , Textiles , Water Pollutants, Chemical/analysis
20.
Environ Res ; 207: 112158, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34606840

ABSTRACT

The biological denitrification in the presence of gC3N4 doped TiO2 composite was investigated through series of batch experiment. gC3N4 doped TiO2 was synthesized and characterized by FT-IR, XRD, SEM-EDAX and the prepared composite used as electron donor for the enhancement biological denitrification. The role of extracellular polymeric substances in the biological nitrate reduction and electron transfer process has been elucidated. The XRD result confirms that TiO2 nanoparticle has 80% anatase and 20% rutile phase. The gC3N4 shows the diffraction peaks at 27.57°, corresponds to the diffraction planes of (002) the hexagonal graphitic carbon nitride. The SEM image of modified gC3N4/TiO2 nanocomposites showed agglomerated small spherical TiO2 nanoparticles attached on the surface of gC3N4. The highest level of nitrate removal was 90% (from 100 mg/L to 10 mg/L nitrate) in gC3N4/TiO2 nanocomposite in the 15% wt TiO2 doped gC3N4. The nitrate reduction in the biofilm with gC3N4 doped TiO2 composite have significantly enhanced the nitrate reduction than the control. Photoexcited electrons were generated from gC3N4 doped TiO2 photocatalyst act as excellent electron donor to the microbial communities. Extracellular polymeric substances acted as a passing media for microbial extracellular electron transfer and protective barrier for microbes. The electroactive microbes were harvested electrons from the gC3N4 doped TiO2 composite under irradiation and enhancing the biological nitrate reduction. Overall, the present study suggests that insight into the mechanism of photoexcited electron facilitated biological nitrate reduction and role of extracellular polymeric substances. The successful integration of gC3N4 doped TiO2 photocatalyst and biofilm is a promising technology for nitrate removal.


Subject(s)
Extracellular Polymeric Substance Matrix , Nitrates , Catalysis , Spectroscopy, Fourier Transform Infrared , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...