Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 29(9): 1286-1294, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26059856

ABSTRACT

Various studies have demonstrated that overexpression of cathepsin K (Cat-K) causes excessive bone loss, which ultimately leads to a variety of bone diseases including osteoporosis. Therefore, inhibition of Cat-K signifies a potential therapeutic target in osteoporosis treatment. Ginsenoside Rg3 is one of the most promising compound of Panax ginseng Meyer (P. ginseng) with numerous biological activities. Thus, in recent study the inhibitory effect of Rg3 isolated from P. ginseng was investigated in order to impede the osteoclast activity by an in silico approach followed by in vitro study validation using RAW264.7 cells through the investigation of different biological activity prediction such as absorption distribution metabolism and excretion (ADMET) properties against Cat-K protein. The docking results of our study showed that Rg3 is a non-toxic compound and may act as a drug-like molecule. Additionally, the molecular interaction of Rg3 with the active residues of Cat-K markedly describes its inhibitory effects on osteoclastogenesis. Findings of the present study exhibited that Rg3 significantly reduced receptor activator of nuclear factor kappa B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, pit formation (actin rings), and TRAP-positive multinucleated cells development in RAW264.7 cells. Furthermore, Rg3 dose-dependently reduced the mRNA expression levels of osteoclast-specific markers such as RANK, TRAP, and Cat-K induced by RANKL through the down regulation of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) pathways. In conclusion, in silico docking study and in vitro validation together suggested that Rg3 inhibits osteoclastogenesis and reduces bone resorption through the inhibition of Cat-K. Therefore, Rg3 might be a useful therapeutic agent for the treatment of osteoporosis and proper bone formation. Copyright © 2015 John Wiley & Sons, Ltd.

2.
J Enzyme Inhib Med Chem ; 30(1): 9-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24666293

ABSTRACT

Abstract Panax ginseng Meyer has been shown to be effective in mitigating various diseases. Protopanaxadiols (PPD) and protopanaxatriols (PPT), which are the main constituents of ginseng, have been shown to impact obesity. Therefore, we selected several important ginsenosides to perform our docking study and determine if they had binding affinity with the peroxisome proliferator activated receptor gamma (PPARγ), which is a major transcription factor in adipocytes. Among them, only a few ginsenosides demonstrated binding affinity with PPARγ. Other than ginsenoside F2 rest of them were previously reported by the researchers in experimental study in case of obesity cell line 3T3-L1 adipocyte. In few recent studies, it was reported that F2 has protective effects on malignant brain tumors as well as anti-cancer activity in breast cancer. Therefore, we felt it was important to focus on F2 when considering obesity. Our study focused on this ginsenoside and analyzed its impact on 3T3-L1 adipocytes. Following the molecular interaction studies, further experimental studies were carried out and demonstrated that ginsenoside F2 when treated with different doses reduces the level of lipid accumulated by the 3T3-L1 cell line during adipogenesis. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time PCR results showed reduction in PPARγ and perilipin gene expression levels compared to that of differentiated adipocytes without any treatment. So considering the binding with a major adipocyte transcription factor and the performed experiments, we suggest that ginsenoside F2 may reduce obesity via the inhibition of adipogenesis in the 3T3-L1 cell line.


Subject(s)
Adipocytes/drug effects , Anti-Obesity Agents/pharmacology , Carrier Proteins/antagonists & inhibitors , Ginsenosides/pharmacology , PPAR gamma/antagonists & inhibitors , Phosphoproteins/antagonists & inhibitors , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/isolation & purification , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation/drug effects , Gene Expression , Ginsenosides/chemistry , Ginsenosides/isolation & purification , Humans , Lipid Metabolism/drug effects , Mice , Molecular Docking Simulation , PPAR gamma/chemistry , PPAR gamma/genetics , PPAR gamma/metabolism , Panax/chemistry , Perilipin-1 , Phosphoproteins/genetics , Phosphoproteins/metabolism , Plant Extracts/chemistry , Protein Binding
3.
J Ginseng Res ; 37(3): 261-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24198650

ABSTRACT

The ginseng plant (Panax ginseng Meyer) has a large number of active ingredients including steroidal saponins with a dammarane skeleton as well as protopanaxadiol and protopanaxatriol, commonly known as ginsenosides, which have antioxidant, anticancer, antidiabetic, anti-adipocyte, and sexual enhancing effects. Though several discoveries have demonstrated that ginseng saponins (ginsenosides) as the most important therapeutic agent for the treatment of osteoporosis, yet the molecular mechanism of its active metabolites is unknown. In this review, we summarize the evidence supporting the therapeutic properties of ginsenosides both in vivo and in vitro, with an emphasis on the different molecular agents comprising receptor activator of nuclear factor kappa-B ligand, receptor activator of nuclear factor kappa-B, and matrix metallopeptidase-9, as well as the bone morphogenetic protein-2 and Smad signaling pathways.

4.
Comput Biol Med ; 43(8): 1037-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23816176

ABSTRACT

BACE1, a ß secretase candidate enzyme, initiates the Alzheimer's disease (AD) pathogenesis via amyloid ß (Aß) peptide production serving as a potential therapeutic target. Previous experimental evidence suggested that ginsenosides, a key component of Panax ginseng, are effective against AD. In this study, we implemented a molecular modeling method to reveal the inhibitory action of ginsenosides on BACE1 activity. We selected 12 ginsenosides and performed molecular docking studies to evaluate its interaction with the BACE1 active site, which is essential for inhibition. Further ADMET filtration was applied to find drug-like molecules with a specific ability to cross blood brain barrier (BBB), and to determine toxicity. The BACE1-ginsenosides complex was further subjected to a molecular dynamics simulation to study the stability of the complex and its hydrogen bond interactions. In summary, our findings show ginsenosides CK, F1, Rh1 and Rh2 are potential BACE1 inhibitors from Panax ginseng.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Ginsenosides/chemistry , Ginsenosides/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Panax/chemistry , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Catalytic Domain , Drug Stability , Enzyme Inhibitors/metabolism , Ginsenosides/metabolism , Humans , Hydrogen Bonding , Thermodynamics
5.
Comput Biol Med ; 43(6): 786-97, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23668355

ABSTRACT

Natural products have served as structural resources in the history of drug discovery for cancer therapy. Among these natural products, Korean Panax ginseng serves as a potential anti-cancer medicinal plant. To determine the anti-cancer activities of Korean P. ginseng active compounds, we performed pharmacophore-based virtual screening and molecular docking studies on EGFR (epidermal growth factor receptor) tyrosine kinase domain. The EGFR family tyrosine kinase receptor is a cell surface receptor that regulates diverse biological processes including cell proliferation, differentiation, survival, and apoptosis. Over expression of EGFR tyrosine kinase domain associated with the development and progression of numerous human cancers. In our study, we developed the best pharmacophore model (Hypo1) using a diverse training set and validated by Fischer's randomization, a test set, and a decoy set. The best validated model was employed in the virtual screening of P. ginseng compound database. Further, chosen molecules were evaluated by applying ADMET screening and molecular docking studies. Finally, 14 compounds were obtained based on binding affinity scores and interactions with protein active site residues. These final lead compounds from P. ginseng can be used in the designing of new EGFR tyrosine kinase inhibitors.


Subject(s)
Antineoplastic Agents/chemistry , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Ginsenosides/chemistry , Molecular Docking Simulation , Panax/chemistry , Protein Kinase Inhibitors/chemistry , Humans
6.
J Enzyme Inhib Med Chem ; 27(5): 685-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21919598

ABSTRACT

Anti-apoptotic proteins such as BCL-2, BCL-XL and MCL-1 bind with pro-apoptotic proteins to induce apoptosis mechanism. BCL-2 family proteins are key regulators of apoptosis process. Over expression of these anti-apoptotic proteins lead to several cancers by preventing apoptosis. A number of studies revealed that ginseng derivatives reduce tumor growth. Ginseng, the most valuable medicinal herb found in eastern Asia belongs to Araliaceae family. In this study, docking simulations were performed for anti-apoptotic proteins with several ginsenosides from Panax ginseng. Our finding shows ginsenosides Rf, Rg1, Rg3 and Rh2 have more binding affinity with BCL-2, BCL-XL and MCL-1 and other ginsenosides also interact with each anti-apoptotic proteins. Therefore, ginseng derivatives represent a novel class of potent inhibitors and could be used for cancer chemotherapy.


Subject(s)
Ginsenosides/metabolism , Panax/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/metabolism , Amino Acid Sequence , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Sequence Data , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/chemistry , Sequence Homology, Amino Acid , bcl-X Protein/chemistry
7.
Bioinformation ; 5(6): 264-5, 2010 Nov 27.
Article in English | MEDLINE | ID: mdl-21364829

ABSTRACT

WE DEVELOPED, TNAURICE: a database comprising of the rice varieties released from a public institution, Tamil Nadu Agricultural University (TNAU), Coimbatore, India. Backed by MS-SQL, and ASP-Net at the front end, this database provide information on both quantitative and qualitative descriptors of the rice varities inclusive of their parental details. Enabled by an user friendly search utility, the database can be effectively searched by the varietal descriptors, and the entire contents are navigable as well. The database comes handy to the plant breeders involved in the varietal improvement programs to decide on the choice of parental lines. TNAURice is available for public access at http://www.btistnau.org/germdefault.aspx.

SELECTION OF CITATIONS
SEARCH DETAIL
...