Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 20(1): 173, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32560676

ABSTRACT

BACKGROUND: Though many plant defensins exhibit antibacterial activity, little is known about their antibacterial mode of action (MOA). Antimicrobial peptides with a characterized MOA induce the expression of multiple bacterial outer membrane modifications, which are required for resistance to these membrane-targeting peptides. Mini-Tn5-lux mutant strains of Pseudomonas aeruginosa with Tn insertions disrupting outer membrane protective modifications were assessed for sensitivity against plant defensin peptides. These transcriptional lux reporter strains were also evaluated for lux gene expression in response to sublethal plant defensin exposure. Also, a plant pathogen, Pseudomonas syringae pv. syringae was modified through transposon mutagenesis to create mutants that are resistant to in vitro MtDef4 treatments. RESULTS: Plant defensins displayed specific and potent antibacterial activity against strains of P. aeruginosa. A defensin from Medicago truncatula, MtDef4, induced dose-dependent gene expression of the aminoarabinose modification of LPS and surface polycation spermidine production operons. The ability for MtDef4 to damage bacterial outer membranes was also verified visually through fluorescent microscopy. Another defensin from M. truncatula, MtDef5, failed to induce lux gene expression and limited outer membrane damage was detected with fluorescent microscopy. The transposon insertion site on MtDef4 resistant P. syringae pv. syringae mutants was sequenced, and modifications of ribosomal genes were identified to contribute to enhanced resistance to plant defensin treatments. CONCLUSIONS: MtDef4 damages the outer membrane similar to polymyxin B, which stimulates antimicrobial peptide resistance mechanisms to plant defensins. MtDef5, appears to have a different antibacterial MOA. Additionally, the MtDef4 antibacterial mode of action may also involve inhibition of translation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Defensins/pharmacology , Medicago truncatula/chemistry , Pseudomonas syringae/genetics , Ribosomal Proteins/genetics , Bacterial Outer Membrane , Bacterial Proteins/genetics , DNA Transposable Elements , Dose-Response Relationship, Drug , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Genes, Reporter , Mutagenesis, Insertional , Mutation , Pseudomonas syringae/drug effects , Sequence Analysis, RNA
2.
Phytopathology ; 109(3): 402-408, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30252607

ABSTRACT

Plant defensins are small, cysteine-rich antimicrobial peptides. These peptides have previously been shown to primarily inhibit the growth of fungal plant pathogens. Plant defensins have a γ-core motif, defined as GXCX3-9C, which is required for their antifungal activity. To evaluate plant defensins as a potential control for a problematic agricultural disease (alfalfa crown rot), short, chemically synthesized peptides containing γ-core motif sequences were screened for activity against numerous crown rot pathogens. These peptides showed both antifungal and, surprisingly, antibacterial activity. Core motif peptides from Medicago truncatula defensins (MtDef4 and MtDef5) displayed high activity against both plant and human bacterial pathogens in vitro. Full-length defensins had higher antimicrobial activity compared with the peptides containing their predictive γ-core motifs. These results show the future promise for controlling a wide array of economically important fungal and bacterial plant pathogens through the transgenic expression of a plant defensin. They also suggest that plant defensins may be an untapped reservoir for development of therapeutic compounds for combating human and animal pathogens.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Peptides/metabolism , Plant Diseases/microbiology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Defensins , Humans
3.
Mol Plant Microbe Interact ; 32(5): 507-514, 2019 May.
Article in English | MEDLINE | ID: mdl-30501455

ABSTRACT

Plant defensins are antimicrobial host defense peptides expressed in all higher plants. Performing a significant role in plant innate immunity, plant defensins display potent activity against a wide range of pathogens. Vertebrate and invertebrate defensins have well-characterized antibacterial activity, but plant defensins are commonly considered to display antimicrobial activity against only fungi. In this review, we highlight the often-overlooked antibacterial activity of plant defensins. Also, we illustrate methods to evaluate defensins for antibacterial activity and describe the current advances in uncovering their antibacterial modes of action.


Subject(s)
Anti-Bacterial Agents , Bacteria/drug effects , Defensins , Anti-Bacterial Agents/pharmacology , Defensins/pharmacology , Fungi/drug effects , Plants/chemistry , Plants/immunology
4.
J Exp Bot ; 69(22): 5587-5597, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30169819

ABSTRACT

Nectar is one of the key rewards mediating plant-mutualist interactions. In addition to sugars, nectars often contain many other compounds with important biological functions, including proteins. This study was undertaken to assess the proteinaceous content of Brassica rapa nectar. SDS-PAGE analysis of raw B. rapa nectar revealed the presence of ~10 proteins, with a major band at ~10 kDa. This major band was found to contain a non-specific lipid transfer protein encoded by B. rapa locus Bra028980 and subsequently termed BrLTP2.1. Sequence analysis of BrLTP2.1 predicted the presence of a signal peptide required for secretion from the cell, eight cysteines, and a mature molecular mass of 7.3 kDa. Constitutively expressed BrLTP2.1-GFP in Arabidopsis displayed accumulation patterns consistent with secretion from nectary cells. BrLTP2.1 was also found to have relatively high sequence similarity to non-specific lipid-transfer proteins with known functions in plant defense, including Arabidopsis DIR1. Heterologously expressed and purified BrLTP2.1 was extremely heat stable and bound strongly to saturated free fatty acids, but not methyl jasmonate. Recombinant BrLTP2.1 also had direct antimicrobial activity against an extensive range of plant pathogens, being particularly effective against necrotrophic fungi. Taken together, these results suggest that BrLTP2.1 may function to prevent microbial growth in nectars.


Subject(s)
Antifungal Agents/chemistry , Brassica rapa/genetics , Carrier Proteins/genetics , Plant Nectar/chemistry , Plant Proteins/genetics , Amino Acid Sequence , Brassica rapa/metabolism , Carrier Proteins/metabolism , Phylogeny , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...